Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995) (Revised by Mario Carneiro, 28-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovdi.1 | ⊢ 𝐴 ∈ V | |
| caovdi.2 | ⊢ 𝐵 ∈ V | ||
| caovdi.3 | ⊢ 𝐶 ∈ V | ||
| caovdi.4 | ⊢ ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) | ||
| Assertion | caovdi | ⊢ ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐹 ( 𝐴 𝐺 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdi.1 | ⊢ 𝐴 ∈ V | |
| 2 | caovdi.2 | ⊢ 𝐵 ∈ V | |
| 3 | caovdi.3 | ⊢ 𝐶 ∈ V | |
| 4 | caovdi.4 | ⊢ ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) | |
| 5 | tru | ⊢ ⊤ | |
| 6 | 4 | a1i | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V ) ) → ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) ) |
| 7 | 6 | caovdig | ⊢ ( ( ⊤ ∧ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐹 ( 𝐴 𝐺 𝐶 ) ) ) |
| 8 | 5 7 | mpan | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐹 ( 𝐴 𝐺 𝐶 ) ) ) |
| 9 | 1 2 3 8 | mp3an | ⊢ ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐹 ( 𝐴 𝐺 𝐶 ) ) |