Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caovdig.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐻 ( 𝑥 𝐺 𝑧 ) ) ) | |
caovdid.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | ||
caovdid.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
caovdid.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | ||
Assertion | caovdid | ⊢ ( 𝜑 → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovdig.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐻 ( 𝑥 𝐺 𝑧 ) ) ) | |
2 | caovdid.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) | |
3 | caovdid.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
4 | caovdid.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | |
5 | id | ⊢ ( 𝜑 → 𝜑 ) | |
6 | 1 | caovdig | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝐶 ) ) ) |
7 | 5 2 3 4 6 | syl13anc | ⊢ ( 𝜑 → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝐶 ) ) ) |