Metamath Proof Explorer


Theorem caovdid

Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovdig.1 ( ( 𝜑 ∧ ( 𝑥𝐾𝑦𝑆𝑧𝑆 ) ) → ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐻 ( 𝑥 𝐺 𝑧 ) ) )
caovdid.2 ( 𝜑𝐴𝐾 )
caovdid.3 ( 𝜑𝐵𝑆 )
caovdid.4 ( 𝜑𝐶𝑆 )
Assertion caovdid ( 𝜑 → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 caovdig.1 ( ( 𝜑 ∧ ( 𝑥𝐾𝑦𝑆𝑧𝑆 ) ) → ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐻 ( 𝑥 𝐺 𝑧 ) ) )
2 caovdid.2 ( 𝜑𝐴𝐾 )
3 caovdid.3 ( 𝜑𝐵𝑆 )
4 caovdid.4 ( 𝜑𝐶𝑆 )
5 id ( 𝜑𝜑 )
6 1 caovdig ( ( 𝜑 ∧ ( 𝐴𝐾𝐵𝑆𝐶𝑆 ) ) → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝐶 ) ) )
7 5 2 3 4 6 syl13anc ( 𝜑 → ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) = ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝐶 ) ) )