| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovdig.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐾  ∧  𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) )  =  ( ( 𝑥 𝐺 𝑦 ) 𝐻 ( 𝑥 𝐺 𝑧 ) ) ) | 
						
							| 2 | 1 | ralrimivvva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) )  =  ( ( 𝑥 𝐺 𝑦 ) 𝐻 ( 𝑥 𝐺 𝑧 ) ) ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) )  =  ( 𝐴 𝐺 ( 𝑦 𝐹 𝑧 ) ) ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐺 𝑦 )  =  ( 𝐴 𝐺 𝑦 ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐺 𝑧 )  =  ( 𝐴 𝐺 𝑧 ) ) | 
						
							| 6 | 4 5 | oveq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥 𝐺 𝑦 ) 𝐻 ( 𝑥 𝐺 𝑧 ) )  =  ( ( 𝐴 𝐺 𝑦 ) 𝐻 ( 𝐴 𝐺 𝑧 ) ) ) | 
						
							| 7 | 3 6 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) )  =  ( ( 𝑥 𝐺 𝑦 ) 𝐻 ( 𝑥 𝐺 𝑧 ) )  ↔  ( 𝐴 𝐺 ( 𝑦 𝐹 𝑧 ) )  =  ( ( 𝐴 𝐺 𝑦 ) 𝐻 ( 𝐴 𝐺 𝑧 ) ) ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦 𝐹 𝑧 )  =  ( 𝐵 𝐹 𝑧 ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴 𝐺 ( 𝑦 𝐹 𝑧 ) )  =  ( 𝐴 𝐺 ( 𝐵 𝐹 𝑧 ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴 𝐺 𝑦 )  =  ( 𝐴 𝐺 𝐵 ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴 𝐺 𝑦 ) 𝐻 ( 𝐴 𝐺 𝑧 ) )  =  ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝑧 ) ) ) | 
						
							| 12 | 9 11 | eqeq12d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴 𝐺 ( 𝑦 𝐹 𝑧 ) )  =  ( ( 𝐴 𝐺 𝑦 ) 𝐻 ( 𝐴 𝐺 𝑧 ) )  ↔  ( 𝐴 𝐺 ( 𝐵 𝐹 𝑧 ) )  =  ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝑧 ) ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑧  =  𝐶  →  ( 𝐵 𝐹 𝑧 )  =  ( 𝐵 𝐹 𝐶 ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑧  =  𝐶  →  ( 𝐴 𝐺 ( 𝐵 𝐹 𝑧 ) )  =  ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑧  =  𝐶  →  ( 𝐴 𝐺 𝑧 )  =  ( 𝐴 𝐺 𝐶 ) ) | 
						
							| 16 | 15 | oveq2d | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝑧 ) )  =  ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝐶 ) ) ) | 
						
							| 17 | 14 16 | eqeq12d | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝐴 𝐺 ( 𝐵 𝐹 𝑧 ) )  =  ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝑧 ) )  ↔  ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) )  =  ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝐶 ) ) ) ) | 
						
							| 18 | 7 12 17 | rspc3v | ⊢ ( ( 𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  →  ( ∀ 𝑥  ∈  𝐾 ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) )  =  ( ( 𝑥 𝐺 𝑦 ) 𝐻 ( 𝑥 𝐺 𝑧 ) )  →  ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) )  =  ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝐶 ) ) ) ) | 
						
							| 19 | 2 18 | mpan9 | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝐾  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) )  →  ( 𝐴 𝐺 ( 𝐵 𝐹 𝐶 ) )  =  ( ( 𝐴 𝐺 𝐵 ) 𝐻 ( 𝐴 𝐺 𝐶 ) ) ) |