| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caovdir.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
caovdir.2 |
⊢ 𝐵 ∈ V |
| 3 |
|
caovdir.3 |
⊢ 𝐶 ∈ V |
| 4 |
|
caovdir.com |
⊢ ( 𝑥 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) |
| 5 |
|
caovdir.distr |
⊢ ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) ) = ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) |
| 6 |
|
caovdl.4 |
⊢ 𝐷 ∈ V |
| 7 |
|
caovdl.5 |
⊢ 𝐻 ∈ V |
| 8 |
|
caovdl.ass |
⊢ ( ( 𝑥 𝐺 𝑦 ) 𝐺 𝑧 ) = ( 𝑥 𝐺 ( 𝑦 𝐺 𝑧 ) ) |
| 9 |
|
ovex |
⊢ ( 𝐴 𝐺 𝐶 ) ∈ V |
| 10 |
|
ovex |
⊢ ( 𝐵 𝐺 𝐷 ) ∈ V |
| 11 |
9 10 7 4 5
|
caovdir |
⊢ ( ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐷 ) ) 𝐺 𝐻 ) = ( ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐻 ) 𝐹 ( ( 𝐵 𝐺 𝐷 ) 𝐺 𝐻 ) ) |
| 12 |
1 3 7 8
|
caovass |
⊢ ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐻 ) = ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) |
| 13 |
2 6 7 8
|
caovass |
⊢ ( ( 𝐵 𝐺 𝐷 ) 𝐺 𝐻 ) = ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) |
| 14 |
12 13
|
oveq12i |
⊢ ( ( ( 𝐴 𝐺 𝐶 ) 𝐺 𝐻 ) 𝐹 ( ( 𝐵 𝐺 𝐷 ) 𝐺 𝐻 ) ) = ( ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) ) |
| 15 |
11 14
|
eqtri |
⊢ ( ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐷 ) ) 𝐺 𝐻 ) = ( ( 𝐴 𝐺 ( 𝐶 𝐺 𝐻 ) ) 𝐹 ( 𝐵 𝐺 ( 𝐷 𝐺 𝐻 ) ) ) |