| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovdir2d.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑥 𝐺 ( 𝑦 𝐹 𝑧 ) )  =  ( ( 𝑥 𝐺 𝑦 ) 𝐹 ( 𝑥 𝐺 𝑧 ) ) ) | 
						
							| 2 |  | caovdir2d.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝑆 ) | 
						
							| 3 |  | caovdir2d.3 | ⊢ ( 𝜑  →  𝐵  ∈  𝑆 ) | 
						
							| 4 |  | caovdir2d.4 | ⊢ ( 𝜑  →  𝐶  ∈  𝑆 ) | 
						
							| 5 |  | caovdir2d.cl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 𝐹 𝑦 )  ∈  𝑆 ) | 
						
							| 6 |  | caovdir2d.com | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥 𝐺 𝑦 )  =  ( 𝑦 𝐺 𝑥 ) ) | 
						
							| 7 | 1 4 2 3 | caovdid | ⊢ ( 𝜑  →  ( 𝐶 𝐺 ( 𝐴 𝐹 𝐵 ) )  =  ( ( 𝐶 𝐺 𝐴 ) 𝐹 ( 𝐶 𝐺 𝐵 ) ) ) | 
						
							| 8 | 5 2 3 | caovcld | ⊢ ( 𝜑  →  ( 𝐴 𝐹 𝐵 )  ∈  𝑆 ) | 
						
							| 9 | 6 8 4 | caovcomd | ⊢ ( 𝜑  →  ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 )  =  ( 𝐶 𝐺 ( 𝐴 𝐹 𝐵 ) ) ) | 
						
							| 10 | 6 2 4 | caovcomd | ⊢ ( 𝜑  →  ( 𝐴 𝐺 𝐶 )  =  ( 𝐶 𝐺 𝐴 ) ) | 
						
							| 11 | 6 3 4 | caovcomd | ⊢ ( 𝜑  →  ( 𝐵 𝐺 𝐶 )  =  ( 𝐶 𝐺 𝐵 ) ) | 
						
							| 12 | 10 11 | oveq12d | ⊢ ( 𝜑  →  ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐶 ) )  =  ( ( 𝐶 𝐺 𝐴 ) 𝐹 ( 𝐶 𝐺 𝐵 ) ) ) | 
						
							| 13 | 7 9 12 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 )  =  ( ( 𝐴 𝐺 𝐶 ) 𝐹 ( 𝐵 𝐺 𝐶 ) ) ) |