Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovdirg.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾 ) ) → ( ( 𝑥 𝐹 𝑦 ) 𝐺 𝑧 ) = ( ( 𝑥 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) | |
| caovdird.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| caovdird.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
| caovdird.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | ||
| Assertion | caovdird | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐻 ( 𝐵 𝐺 𝐶 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovdirg.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾 ) ) → ( ( 𝑥 𝐹 𝑦 ) 𝐺 𝑧 ) = ( ( 𝑥 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) ) | |
| 2 | caovdird.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 3 | caovdird.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
| 4 | caovdird.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) | |
| 5 | id | ⊢ ( 𝜑 → 𝜑 ) | |
| 6 | 1 | caovdirg | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐻 ( 𝐵 𝐺 𝐶 ) ) ) | 
| 7 | 5 2 3 4 6 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐻 ( 𝐵 𝐺 𝐶 ) ) ) |