Metamath Proof Explorer


Theorem caovdird

Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovdirg.1 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆𝑧𝐾 ) ) → ( ( 𝑥 𝐹 𝑦 ) 𝐺 𝑧 ) = ( ( 𝑥 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) )
caovdird.2 ( 𝜑𝐴𝑆 )
caovdird.3 ( 𝜑𝐵𝑆 )
caovdird.4 ( 𝜑𝐶𝐾 )
Assertion caovdird ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐻 ( 𝐵 𝐺 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 caovdirg.1 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆𝑧𝐾 ) ) → ( ( 𝑥 𝐹 𝑦 ) 𝐺 𝑧 ) = ( ( 𝑥 𝐺 𝑧 ) 𝐻 ( 𝑦 𝐺 𝑧 ) ) )
2 caovdird.2 ( 𝜑𝐴𝑆 )
3 caovdird.3 ( 𝜑𝐵𝑆 )
4 caovdird.4 ( 𝜑𝐶𝐾 )
5 id ( 𝜑𝜑 )
6 1 caovdirg ( ( 𝜑 ∧ ( 𝐴𝑆𝐵𝑆𝐶𝐾 ) ) → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐻 ( 𝐵 𝐺 𝐶 ) ) )
7 5 2 3 4 6 syl13anc ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) 𝐺 𝐶 ) = ( ( 𝐴 𝐺 𝐶 ) 𝐻 ( 𝐵 𝐺 𝐶 ) ) )