| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovmo.2 | ⊢ 𝐵  ∈  𝑆 | 
						
							| 2 |  | caovmo.dom | ⊢ dom  𝐹  =  ( 𝑆  ×  𝑆 ) | 
						
							| 3 |  | caovmo.3 | ⊢ ¬  ∅  ∈  𝑆 | 
						
							| 4 |  | caovmo.com | ⊢ ( 𝑥 𝐹 𝑦 )  =  ( 𝑦 𝐹 𝑥 ) | 
						
							| 5 |  | caovmo.ass | ⊢ ( ( 𝑥 𝐹 𝑦 ) 𝐹 𝑧 )  =  ( 𝑥 𝐹 ( 𝑦 𝐹 𝑧 ) ) | 
						
							| 6 |  | caovmo.id | ⊢ ( 𝑥  ∈  𝑆  →  ( 𝑥 𝐹 𝐵 )  =  𝑥 ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑢  =  𝐴  →  ( 𝑢 𝐹 𝑤 )  =  ( 𝐴 𝐹 𝑤 ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑢  =  𝐴  →  ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ↔  ( 𝐴 𝐹 𝑤 )  =  𝐵 ) ) | 
						
							| 9 | 8 | mobidv | ⊢ ( 𝑢  =  𝐴  →  ( ∃* 𝑤 ( 𝑢 𝐹 𝑤 )  =  𝐵  ↔  ∃* 𝑤 ( 𝐴 𝐹 𝑤 )  =  𝐵 ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑤  =  𝑣  →  ( 𝑢 𝐹 𝑤 )  =  ( 𝑢 𝐹 𝑣 ) ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( 𝑤  =  𝑣  →  ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ↔  ( 𝑢 𝐹 𝑣 )  =  𝐵 ) ) | 
						
							| 12 | 11 | mo4 | ⊢ ( ∃* 𝑤 ( 𝑢 𝐹 𝑤 )  =  𝐵  ↔  ∀ 𝑤 ∀ 𝑣 ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  𝑤  =  𝑣 ) ) | 
						
							| 13 |  | simpr | ⊢ ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  ( 𝑢 𝐹 𝑣 )  =  𝐵 ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  ( 𝑤 𝐹 ( 𝑢 𝐹 𝑣 ) )  =  ( 𝑤 𝐹 𝐵 ) ) | 
						
							| 15 |  | simpl | ⊢ ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  ( 𝑢 𝐹 𝑤 )  =  𝐵 ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  ( ( 𝑢 𝐹 𝑤 ) 𝐹 𝑣 )  =  ( 𝐵 𝐹 𝑣 ) ) | 
						
							| 17 |  | vex | ⊢ 𝑢  ∈  V | 
						
							| 18 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 19 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 20 | 17 18 19 5 | caovass | ⊢ ( ( 𝑢 𝐹 𝑤 ) 𝐹 𝑣 )  =  ( 𝑢 𝐹 ( 𝑤 𝐹 𝑣 ) ) | 
						
							| 21 | 17 18 19 4 5 | caov12 | ⊢ ( 𝑢 𝐹 ( 𝑤 𝐹 𝑣 ) )  =  ( 𝑤 𝐹 ( 𝑢 𝐹 𝑣 ) ) | 
						
							| 22 | 20 21 | eqtri | ⊢ ( ( 𝑢 𝐹 𝑤 ) 𝐹 𝑣 )  =  ( 𝑤 𝐹 ( 𝑢 𝐹 𝑣 ) ) | 
						
							| 23 | 1 | elexi | ⊢ 𝐵  ∈  V | 
						
							| 24 | 23 19 4 | caovcom | ⊢ ( 𝐵 𝐹 𝑣 )  =  ( 𝑣 𝐹 𝐵 ) | 
						
							| 25 | 16 22 24 | 3eqtr3g | ⊢ ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  ( 𝑤 𝐹 ( 𝑢 𝐹 𝑣 ) )  =  ( 𝑣 𝐹 𝐵 ) ) | 
						
							| 26 | 14 25 | eqtr3d | ⊢ ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  ( 𝑤 𝐹 𝐵 )  =  ( 𝑣 𝐹 𝐵 ) ) | 
						
							| 27 | 15 1 | eqeltrdi | ⊢ ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  ( 𝑢 𝐹 𝑤 )  ∈  𝑆 ) | 
						
							| 28 | 2 3 | ndmovrcl | ⊢ ( ( 𝑢 𝐹 𝑤 )  ∈  𝑆  →  ( 𝑢  ∈  𝑆  ∧  𝑤  ∈  𝑆 ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  ( 𝑢  ∈  𝑆  ∧  𝑤  ∈  𝑆 ) ) | 
						
							| 30 |  | oveq1 | ⊢ ( 𝑥  =  𝑤  →  ( 𝑥 𝐹 𝐵 )  =  ( 𝑤 𝐹 𝐵 ) ) | 
						
							| 31 |  | id | ⊢ ( 𝑥  =  𝑤  →  𝑥  =  𝑤 ) | 
						
							| 32 | 30 31 | eqeq12d | ⊢ ( 𝑥  =  𝑤  →  ( ( 𝑥 𝐹 𝐵 )  =  𝑥  ↔  ( 𝑤 𝐹 𝐵 )  =  𝑤 ) ) | 
						
							| 33 | 32 6 | vtoclga | ⊢ ( 𝑤  ∈  𝑆  →  ( 𝑤 𝐹 𝐵 )  =  𝑤 ) | 
						
							| 34 | 29 33 | simpl2im | ⊢ ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  ( 𝑤 𝐹 𝐵 )  =  𝑤 ) | 
						
							| 35 | 13 1 | eqeltrdi | ⊢ ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  ( 𝑢 𝐹 𝑣 )  ∈  𝑆 ) | 
						
							| 36 | 2 3 | ndmovrcl | ⊢ ( ( 𝑢 𝐹 𝑣 )  ∈  𝑆  →  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 ) ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  ( 𝑢  ∈  𝑆  ∧  𝑣  ∈  𝑆 ) ) | 
						
							| 38 |  | oveq1 | ⊢ ( 𝑥  =  𝑣  →  ( 𝑥 𝐹 𝐵 )  =  ( 𝑣 𝐹 𝐵 ) ) | 
						
							| 39 |  | id | ⊢ ( 𝑥  =  𝑣  →  𝑥  =  𝑣 ) | 
						
							| 40 | 38 39 | eqeq12d | ⊢ ( 𝑥  =  𝑣  →  ( ( 𝑥 𝐹 𝐵 )  =  𝑥  ↔  ( 𝑣 𝐹 𝐵 )  =  𝑣 ) ) | 
						
							| 41 | 40 6 | vtoclga | ⊢ ( 𝑣  ∈  𝑆  →  ( 𝑣 𝐹 𝐵 )  =  𝑣 ) | 
						
							| 42 | 37 41 | simpl2im | ⊢ ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  ( 𝑣 𝐹 𝐵 )  =  𝑣 ) | 
						
							| 43 | 26 34 42 | 3eqtr3d | ⊢ ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  𝑤  =  𝑣 ) | 
						
							| 44 | 43 | ax-gen | ⊢ ∀ 𝑣 ( ( ( 𝑢 𝐹 𝑤 )  =  𝐵  ∧  ( 𝑢 𝐹 𝑣 )  =  𝐵 )  →  𝑤  =  𝑣 ) | 
						
							| 45 | 12 44 | mpgbir | ⊢ ∃* 𝑤 ( 𝑢 𝐹 𝑤 )  =  𝐵 | 
						
							| 46 | 9 45 | vtoclg | ⊢ ( 𝐴  ∈  𝑆  →  ∃* 𝑤 ( 𝐴 𝐹 𝑤 )  =  𝐵 ) | 
						
							| 47 |  | moanimv | ⊢ ( ∃* 𝑤 ( 𝐴  ∈  𝑆  ∧  ( 𝐴 𝐹 𝑤 )  =  𝐵 )  ↔  ( 𝐴  ∈  𝑆  →  ∃* 𝑤 ( 𝐴 𝐹 𝑤 )  =  𝐵 ) ) | 
						
							| 48 | 46 47 | mpbir | ⊢ ∃* 𝑤 ( 𝐴  ∈  𝑆  ∧  ( 𝐴 𝐹 𝑤 )  =  𝐵 ) | 
						
							| 49 |  | eleq1 | ⊢ ( ( 𝐴 𝐹 𝑤 )  =  𝐵  →  ( ( 𝐴 𝐹 𝑤 )  ∈  𝑆  ↔  𝐵  ∈  𝑆 ) ) | 
						
							| 50 | 1 49 | mpbiri | ⊢ ( ( 𝐴 𝐹 𝑤 )  =  𝐵  →  ( 𝐴 𝐹 𝑤 )  ∈  𝑆 ) | 
						
							| 51 | 2 3 | ndmovrcl | ⊢ ( ( 𝐴 𝐹 𝑤 )  ∈  𝑆  →  ( 𝐴  ∈  𝑆  ∧  𝑤  ∈  𝑆 ) ) | 
						
							| 52 | 50 51 | syl | ⊢ ( ( 𝐴 𝐹 𝑤 )  =  𝐵  →  ( 𝐴  ∈  𝑆  ∧  𝑤  ∈  𝑆 ) ) | 
						
							| 53 | 52 | simpld | ⊢ ( ( 𝐴 𝐹 𝑤 )  =  𝐵  →  𝐴  ∈  𝑆 ) | 
						
							| 54 | 53 | ancri | ⊢ ( ( 𝐴 𝐹 𝑤 )  =  𝐵  →  ( 𝐴  ∈  𝑆  ∧  ( 𝐴 𝐹 𝑤 )  =  𝐵 ) ) | 
						
							| 55 | 54 | moimi | ⊢ ( ∃* 𝑤 ( 𝐴  ∈  𝑆  ∧  ( 𝐴 𝐹 𝑤 )  =  𝐵 )  →  ∃* 𝑤 ( 𝐴 𝐹 𝑤 )  =  𝐵 ) | 
						
							| 56 | 48 55 | ax-mp | ⊢ ∃* 𝑤 ( 𝐴 𝐹 𝑤 )  =  𝐵 |