Metamath Proof Explorer


Theorem caovord

Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996)

Ref Expression
Hypotheses caovord.1 𝐴 ∈ V
caovord.2 𝐵 ∈ V
caovord.3 ( 𝑧𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) )
Assertion caovord ( 𝐶𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 caovord.1 𝐴 ∈ V
2 caovord.2 𝐵 ∈ V
3 caovord.3 ( 𝑧𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) )
4 oveq1 ( 𝑧 = 𝐶 → ( 𝑧 𝐹 𝐴 ) = ( 𝐶 𝐹 𝐴 ) )
5 oveq1 ( 𝑧 = 𝐶 → ( 𝑧 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐵 ) )
6 4 5 breq12d ( 𝑧 = 𝐶 → ( ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )
7 6 bibi2d ( 𝑧 = 𝐶 → ( ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ↔ ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) )
8 breq1 ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑦𝐴 𝑅 𝑦 ) )
9 oveq2 ( 𝑥 = 𝐴 → ( 𝑧 𝐹 𝑥 ) = ( 𝑧 𝐹 𝐴 ) )
10 9 breq1d ( 𝑥 = 𝐴 → ( ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) )
11 8 10 bibi12d ( 𝑥 = 𝐴 → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ↔ ( 𝐴 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) )
12 breq2 ( 𝑦 = 𝐵 → ( 𝐴 𝑅 𝑦𝐴 𝑅 𝐵 ) )
13 oveq2 ( 𝑦 = 𝐵 → ( 𝑧 𝐹 𝑦 ) = ( 𝑧 𝐹 𝐵 ) )
14 13 breq2d ( 𝑦 = 𝐵 → ( ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) )
15 12 14 bibi12d ( 𝑦 = 𝐵 → ( ( 𝐴 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ↔ ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) )
16 11 15 sylan9bb ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ↔ ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) )
17 16 imbi2d ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( 𝑧𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) ↔ ( 𝑧𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) ) )
18 1 2 17 3 vtocl2 ( 𝑧𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) )
19 7 18 vtoclga ( 𝐶𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )