Step |
Hyp |
Ref |
Expression |
1 |
|
caovord.1 |
⊢ 𝐴 ∈ V |
2 |
|
caovord.2 |
⊢ 𝐵 ∈ V |
3 |
|
caovord.3 |
⊢ ( 𝑧 ∈ 𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) |
4 |
|
oveq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 𝐹 𝐴 ) = ( 𝐶 𝐹 𝐴 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐵 ) ) |
6 |
4 5
|
breq12d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
7 |
6
|
bibi2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ↔ ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) ) |
8 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑦 ↔ 𝐴 𝑅 𝑦 ) ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑧 𝐹 𝑥 ) = ( 𝑧 𝐹 𝐴 ) ) |
10 |
9
|
breq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) |
11 |
8 10
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ↔ ( 𝐴 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) ) |
12 |
|
breq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝑅 𝑦 ↔ 𝐴 𝑅 𝐵 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑧 𝐹 𝑦 ) = ( 𝑧 𝐹 𝐵 ) ) |
14 |
13
|
breq2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) |
15 |
12 14
|
bibi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ↔ ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) ) |
16 |
11 15
|
sylan9bb |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ↔ ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) ) |
17 |
16
|
imbi2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑧 ∈ 𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) ↔ ( 𝑧 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) ) ) |
18 |
1 2 17 3
|
vtocl2 |
⊢ ( 𝑧 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) |
19 |
7 18
|
vtoclga |
⊢ ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |