Description: Operation ordering law with commuted arguments. (Contributed by NM, 27-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caovord.1 | ⊢ 𝐴 ∈ V | |
caovord.2 | ⊢ 𝐵 ∈ V | ||
caovord.3 | ⊢ ( 𝑧 ∈ 𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | ||
caovord2.3 | ⊢ 𝐶 ∈ V | ||
caovord2.com | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) | ||
Assertion | caovord2 | ⊢ ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 𝐹 𝐶 ) 𝑅 ( 𝐵 𝐹 𝐶 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovord.1 | ⊢ 𝐴 ∈ V | |
2 | caovord.2 | ⊢ 𝐵 ∈ V | |
3 | caovord.3 | ⊢ ( 𝑧 ∈ 𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | |
4 | caovord2.3 | ⊢ 𝐶 ∈ V | |
5 | caovord2.com | ⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) | |
6 | 1 2 3 | caovord | ⊢ ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
7 | 4 1 5 | caovcom | ⊢ ( 𝐶 𝐹 𝐴 ) = ( 𝐴 𝐹 𝐶 ) |
8 | 4 2 5 | caovcom | ⊢ ( 𝐶 𝐹 𝐵 ) = ( 𝐵 𝐹 𝐶 ) |
9 | 7 8 | breq12i | ⊢ ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ↔ ( 𝐴 𝐹 𝐶 ) 𝑅 ( 𝐵 𝐹 𝐶 ) ) |
10 | 6 9 | bitrdi | ⊢ ( 𝐶 ∈ 𝑆 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 𝐹 𝐶 ) 𝑅 ( 𝐵 𝐹 𝐶 ) ) ) |