Metamath Proof Explorer


Theorem caovord2d

Description: Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovordg.1 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆𝑧𝑆 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) )
caovordd.2 ( 𝜑𝐴𝑆 )
caovordd.3 ( 𝜑𝐵𝑆 )
caovordd.4 ( 𝜑𝐶𝑆 )
caovord2d.com ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) )
Assertion caovord2d ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 𝐹 𝐶 ) 𝑅 ( 𝐵 𝐹 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 caovordg.1 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆𝑧𝑆 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) )
2 caovordd.2 ( 𝜑𝐴𝑆 )
3 caovordd.3 ( 𝜑𝐵𝑆 )
4 caovordd.4 ( 𝜑𝐶𝑆 )
5 caovord2d.com ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) )
6 1 2 3 4 caovordd ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) )
7 5 4 2 caovcomd ( 𝜑 → ( 𝐶 𝐹 𝐴 ) = ( 𝐴 𝐹 𝐶 ) )
8 5 4 3 caovcomd ( 𝜑 → ( 𝐶 𝐹 𝐵 ) = ( 𝐵 𝐹 𝐶 ) )
9 7 8 breq12d ( 𝜑 → ( ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ↔ ( 𝐴 𝐹 𝐶 ) 𝑅 ( 𝐵 𝐹 𝐶 ) ) )
10 6 9 bitrd ( 𝜑 → ( 𝐴 𝑅 𝐵 ↔ ( 𝐴 𝐹 𝐶 ) 𝑅 ( 𝐵 𝐹 𝐶 ) ) )