Step |
Hyp |
Ref |
Expression |
1 |
|
caovord.1 |
⊢ 𝐴 ∈ V |
2 |
|
caovord.2 |
⊢ 𝐵 ∈ V |
3 |
|
caovord.3 |
⊢ ( 𝑧 ∈ 𝑆 → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) |
4 |
|
caovord2.3 |
⊢ 𝐶 ∈ V |
5 |
|
caovord2.com |
⊢ ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) |
6 |
|
caovord3.4 |
⊢ 𝐷 ∈ V |
7 |
1 4 3 2 5
|
caovord2 |
⊢ ( 𝐵 ∈ 𝑆 → ( 𝐴 𝑅 𝐶 ↔ ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) → ( 𝐴 𝑅 𝐶 ↔ ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
9 |
|
breq1 |
⊢ ( ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) → ( ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
10 |
8 9
|
sylan9bb |
⊢ ( ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) ) → ( 𝐴 𝑅 𝐶 ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
11 |
6 2 3
|
caovord |
⊢ ( 𝐶 ∈ 𝑆 → ( 𝐷 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
12 |
11
|
ad2antlr |
⊢ ( ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) ) → ( 𝐷 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
13 |
10 12
|
bitr4d |
⊢ ( ( ( 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ∧ ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) ) → ( 𝐴 𝑅 𝐶 ↔ 𝐷 𝑅 𝐵 ) ) |