Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovordig.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝑅 𝑦 → ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | |
| caovordid.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| caovordid.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
| caovordid.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | ||
| Assertion | caovordid | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 → ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | caovordig.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝑅 𝑦 → ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | |
| 2 | caovordid.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 3 | caovordid.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
| 4 | caovordid.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | |
| 5 | id | ⊢ ( 𝜑 → 𝜑 ) | |
| 6 | 1 | caovordig | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ) ) → ( 𝐴 𝑅 𝐵 → ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) | 
| 7 | 5 2 3 4 6 | syl13anc | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐵 → ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |