| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caovordig.1 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆  ∧  𝑧  ∈  𝑆 ) )  →  ( 𝑥 𝑅 𝑦  →  ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | 
						
							| 2 | 1 | ralrimivvva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ( 𝑥 𝑅 𝑦  →  ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝑅 𝑦  ↔  𝐴 𝑅 𝑦 ) ) | 
						
							| 4 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑧 𝐹 𝑥 )  =  ( 𝑧 𝐹 𝐴 ) ) | 
						
							| 5 | 4 | breq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 )  ↔  ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | 
						
							| 6 | 3 5 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥 𝑅 𝑦  →  ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) )  ↔  ( 𝐴 𝑅 𝑦  →  ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) ) | 
						
							| 7 |  | breq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴 𝑅 𝑦  ↔  𝐴 𝑅 𝐵 ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑧 𝐹 𝑦 )  =  ( 𝑧 𝐹 𝐵 ) ) | 
						
							| 9 | 8 | breq2d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 )  ↔  ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) | 
						
							| 10 | 7 9 | imbi12d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴 𝑅 𝑦  →  ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝑦 ) )  ↔  ( 𝐴 𝑅 𝐵  →  ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) ) ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑧  =  𝐶  →  ( 𝑧 𝐹 𝐴 )  =  ( 𝐶 𝐹 𝐴 ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑧  =  𝐶  →  ( 𝑧 𝐹 𝐵 )  =  ( 𝐶 𝐹 𝐵 ) ) | 
						
							| 13 | 11 12 | breq12d | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 )  ↔  ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝐴 𝑅 𝐵  →  ( 𝑧 𝐹 𝐴 ) 𝑅 ( 𝑧 𝐹 𝐵 ) )  ↔  ( 𝐴 𝑅 𝐵  →  ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) ) | 
						
							| 15 | 6 10 14 | rspc3v | ⊢ ( ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 )  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ∀ 𝑧  ∈  𝑆 ( 𝑥 𝑅 𝑦  →  ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) )  →  ( 𝐴 𝑅 𝐵  →  ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) ) | 
						
							| 16 | 2 15 | mpan9 | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  𝑆  ∧  𝐵  ∈  𝑆  ∧  𝐶  ∈  𝑆 ) )  →  ( 𝐴 𝑅 𝐵  →  ( 𝐶 𝐹 𝐴 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |