Step |
Hyp |
Ref |
Expression |
1 |
|
1onn |
⊢ 1o ∈ ω |
2 |
|
cardnn |
⊢ ( 1o ∈ ω → ( card ‘ 1o ) = 1o ) |
3 |
1 2
|
ax-mp |
⊢ ( card ‘ 1o ) = 1o |
4 |
|
1n0 |
⊢ 1o ≠ ∅ |
5 |
3 4
|
eqnetri |
⊢ ( card ‘ 1o ) ≠ ∅ |
6 |
|
carden2a |
⊢ ( ( ( card ‘ 1o ) = ( card ‘ 𝐴 ) ∧ ( card ‘ 1o ) ≠ ∅ ) → 1o ≈ 𝐴 ) |
7 |
5 6
|
mpan2 |
⊢ ( ( card ‘ 1o ) = ( card ‘ 𝐴 ) → 1o ≈ 𝐴 ) |
8 |
7
|
eqcoms |
⊢ ( ( card ‘ 𝐴 ) = ( card ‘ 1o ) → 1o ≈ 𝐴 ) |
9 |
8
|
ensymd |
⊢ ( ( card ‘ 𝐴 ) = ( card ‘ 1o ) → 𝐴 ≈ 1o ) |
10 |
|
carden2b |
⊢ ( 𝐴 ≈ 1o → ( card ‘ 𝐴 ) = ( card ‘ 1o ) ) |
11 |
9 10
|
impbii |
⊢ ( ( card ‘ 𝐴 ) = ( card ‘ 1o ) ↔ 𝐴 ≈ 1o ) |
12 |
3
|
eqeq2i |
⊢ ( ( card ‘ 𝐴 ) = ( card ‘ 1o ) ↔ ( card ‘ 𝐴 ) = 1o ) |
13 |
|
en1 |
⊢ ( 𝐴 ≈ 1o ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |
14 |
11 12 13
|
3bitr3i |
⊢ ( ( card ‘ 𝐴 ) = 1o ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) |