| Step |
Hyp |
Ref |
Expression |
| 1 |
|
card2inf.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
breq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ≺ 𝐴 ↔ ∅ ≺ 𝐴 ) ) |
| 3 |
|
breq1 |
⊢ ( 𝑥 = 𝑛 → ( 𝑥 ≺ 𝐴 ↔ 𝑛 ≺ 𝐴 ) ) |
| 4 |
|
breq1 |
⊢ ( 𝑥 = suc 𝑛 → ( 𝑥 ≺ 𝐴 ↔ suc 𝑛 ≺ 𝐴 ) ) |
| 5 |
|
0elon |
⊢ ∅ ∈ On |
| 6 |
|
breq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ≈ 𝐴 ↔ ∅ ≈ 𝐴 ) ) |
| 7 |
6
|
rspcev |
⊢ ( ( ∅ ∈ On ∧ ∅ ≈ 𝐴 ) → ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ) |
| 8 |
5 7
|
mpan |
⊢ ( ∅ ≈ 𝐴 → ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ) |
| 9 |
8
|
con3i |
⊢ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → ¬ ∅ ≈ 𝐴 ) |
| 10 |
1
|
0dom |
⊢ ∅ ≼ 𝐴 |
| 11 |
|
brsdom |
⊢ ( ∅ ≺ 𝐴 ↔ ( ∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴 ) ) |
| 12 |
10 11
|
mpbiran |
⊢ ( ∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴 ) |
| 13 |
9 12
|
sylibr |
⊢ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → ∅ ≺ 𝐴 ) |
| 14 |
|
sucdom2 |
⊢ ( 𝑛 ≺ 𝐴 → suc 𝑛 ≼ 𝐴 ) |
| 15 |
14
|
ad2antll |
⊢ ( ( 𝑛 ∈ ω ∧ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴 ) ) → suc 𝑛 ≼ 𝐴 ) |
| 16 |
|
nnon |
⊢ ( 𝑛 ∈ ω → 𝑛 ∈ On ) |
| 17 |
|
onsuc |
⊢ ( 𝑛 ∈ On → suc 𝑛 ∈ On ) |
| 18 |
|
breq1 |
⊢ ( 𝑦 = suc 𝑛 → ( 𝑦 ≈ 𝐴 ↔ suc 𝑛 ≈ 𝐴 ) ) |
| 19 |
18
|
rspcev |
⊢ ( ( suc 𝑛 ∈ On ∧ suc 𝑛 ≈ 𝐴 ) → ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ) |
| 20 |
19
|
ex |
⊢ ( suc 𝑛 ∈ On → ( suc 𝑛 ≈ 𝐴 → ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ) ) |
| 21 |
16 17 20
|
3syl |
⊢ ( 𝑛 ∈ ω → ( suc 𝑛 ≈ 𝐴 → ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ) ) |
| 22 |
21
|
con3dimp |
⊢ ( ( 𝑛 ∈ ω ∧ ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ) → ¬ suc 𝑛 ≈ 𝐴 ) |
| 23 |
22
|
adantrr |
⊢ ( ( 𝑛 ∈ ω ∧ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴 ) ) → ¬ suc 𝑛 ≈ 𝐴 ) |
| 24 |
|
brsdom |
⊢ ( suc 𝑛 ≺ 𝐴 ↔ ( suc 𝑛 ≼ 𝐴 ∧ ¬ suc 𝑛 ≈ 𝐴 ) ) |
| 25 |
15 23 24
|
sylanbrc |
⊢ ( ( 𝑛 ∈ ω ∧ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 ∧ 𝑛 ≺ 𝐴 ) ) → suc 𝑛 ≺ 𝐴 ) |
| 26 |
25
|
exp32 |
⊢ ( 𝑛 ∈ ω → ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → ( 𝑛 ≺ 𝐴 → suc 𝑛 ≺ 𝐴 ) ) ) |
| 27 |
2 3 4 13 26
|
finds2 |
⊢ ( 𝑥 ∈ ω → ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → 𝑥 ≺ 𝐴 ) ) |
| 28 |
27
|
com12 |
⊢ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → ( 𝑥 ∈ ω → 𝑥 ≺ 𝐴 ) ) |
| 29 |
28
|
ralrimiv |
⊢ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → ∀ 𝑥 ∈ ω 𝑥 ≺ 𝐴 ) |
| 30 |
|
omsson |
⊢ ω ⊆ On |
| 31 |
|
ssrab |
⊢ ( ω ⊆ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ↔ ( ω ⊆ On ∧ ∀ 𝑥 ∈ ω 𝑥 ≺ 𝐴 ) ) |
| 32 |
30 31
|
mpbiran |
⊢ ( ω ⊆ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ↔ ∀ 𝑥 ∈ ω 𝑥 ≺ 𝐴 ) |
| 33 |
29 32
|
sylibr |
⊢ ( ¬ ∃ 𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) |