| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cardon |
⊢ ( card ‘ 𝐴 ) ∈ On |
| 2 |
|
eleq1 |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( card ‘ 𝐴 ) ∈ On ↔ 𝐴 ∈ On ) ) |
| 3 |
1 2
|
mpbii |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → 𝐴 ∈ On ) |
| 4 |
|
alephle |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ ( ℵ ‘ 𝐴 ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝐴 ) ) |
| 6 |
5
|
sseq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ↔ 𝐴 ⊆ ( ℵ ‘ 𝐴 ) ) ) |
| 7 |
6
|
rspcev |
⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ⊆ ( ℵ ‘ 𝐴 ) ) → ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) |
| 8 |
4 7
|
mpdan |
⊢ ( 𝐴 ∈ On → ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ) |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 10 |
|
nfcv |
⊢ Ⅎ 𝑥 ℵ |
| 11 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } |
| 12 |
11
|
nfint |
⊢ Ⅎ 𝑥 ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } |
| 13 |
10 12
|
nffv |
⊢ Ⅎ 𝑥 ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) |
| 14 |
9 13
|
nfss |
⊢ Ⅎ 𝑥 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) |
| 15 |
|
fveq2 |
⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 16 |
15
|
sseq2d |
⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } → ( 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ↔ 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 17 |
14 16
|
onminsb |
⊢ ( ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) → 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 18 |
3 8 17
|
3syl |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 19 |
18
|
a1i |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ( card ‘ 𝐴 ) = 𝐴 → 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 20 |
|
fveq2 |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) = ( ℵ ‘ ∅ ) ) |
| 21 |
|
aleph0 |
⊢ ( ℵ ‘ ∅ ) = ω |
| 22 |
20 21
|
eqtrdi |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) = ω ) |
| 23 |
22
|
sseq1d |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ 𝐴 ↔ ω ⊆ 𝐴 ) ) |
| 24 |
23
|
biimprd |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ω ⊆ 𝐴 → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ 𝐴 ) ) |
| 25 |
19 24
|
anim12d |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ω ⊆ 𝐴 ) → ( 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ 𝐴 ) ) ) |
| 26 |
|
eqss |
⊢ ( 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ ( 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∧ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ⊆ 𝐴 ) ) |
| 27 |
25 26
|
imbitrrdi |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ω ⊆ 𝐴 ) → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 28 |
27
|
com12 |
⊢ ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ω ⊆ 𝐴 ) → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 29 |
28
|
ancoms |
⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 30 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝑦 ) ) |
| 31 |
30
|
sseq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ↔ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 32 |
31
|
onnminsb |
⊢ ( 𝑦 ∈ On → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } → ¬ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 33 |
|
vex |
⊢ 𝑦 ∈ V |
| 34 |
33
|
sucid |
⊢ 𝑦 ∈ suc 𝑦 |
| 35 |
|
eleq2 |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ↔ 𝑦 ∈ suc 𝑦 ) ) |
| 36 |
34 35
|
mpbiri |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 → 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) |
| 37 |
32 36
|
impel |
⊢ ( ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) → ¬ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 38 |
37
|
adantl |
⊢ ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) ) → ¬ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 39 |
|
fveq2 |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) = ( ℵ ‘ suc 𝑦 ) ) |
| 40 |
|
alephsuc |
⊢ ( 𝑦 ∈ On → ( ℵ ‘ suc 𝑦 ) = ( har ‘ ( ℵ ‘ 𝑦 ) ) ) |
| 41 |
39 40
|
sylan9eqr |
⊢ ( ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) = ( har ‘ ( ℵ ‘ 𝑦 ) ) ) |
| 42 |
41
|
eleq2d |
⊢ ( ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) → ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ 𝐴 ∈ ( har ‘ ( ℵ ‘ 𝑦 ) ) ) ) |
| 43 |
42
|
biimpd |
⊢ ( ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) → ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝐴 ∈ ( har ‘ ( ℵ ‘ 𝑦 ) ) ) ) |
| 44 |
|
elharval |
⊢ ( 𝐴 ∈ ( har ‘ ( ℵ ‘ 𝑦 ) ) ↔ ( 𝐴 ∈ On ∧ 𝐴 ≼ ( ℵ ‘ 𝑦 ) ) ) |
| 45 |
44
|
simprbi |
⊢ ( 𝐴 ∈ ( har ‘ ( ℵ ‘ 𝑦 ) ) → 𝐴 ≼ ( ℵ ‘ 𝑦 ) ) |
| 46 |
|
onenon |
⊢ ( 𝐴 ∈ On → 𝐴 ∈ dom card ) |
| 47 |
3 46
|
syl |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → 𝐴 ∈ dom card ) |
| 48 |
|
alephon |
⊢ ( ℵ ‘ 𝑦 ) ∈ On |
| 49 |
|
onenon |
⊢ ( ( ℵ ‘ 𝑦 ) ∈ On → ( ℵ ‘ 𝑦 ) ∈ dom card ) |
| 50 |
48 49
|
ax-mp |
⊢ ( ℵ ‘ 𝑦 ) ∈ dom card |
| 51 |
|
carddom2 |
⊢ ( ( 𝐴 ∈ dom card ∧ ( ℵ ‘ 𝑦 ) ∈ dom card ) → ( ( card ‘ 𝐴 ) ⊆ ( card ‘ ( ℵ ‘ 𝑦 ) ) ↔ 𝐴 ≼ ( ℵ ‘ 𝑦 ) ) ) |
| 52 |
47 50 51
|
sylancl |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( card ‘ 𝐴 ) ⊆ ( card ‘ ( ℵ ‘ 𝑦 ) ) ↔ 𝐴 ≼ ( ℵ ‘ 𝑦 ) ) ) |
| 53 |
|
sseq1 |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( card ‘ 𝐴 ) ⊆ ( card ‘ ( ℵ ‘ 𝑦 ) ) ↔ 𝐴 ⊆ ( card ‘ ( ℵ ‘ 𝑦 ) ) ) ) |
| 54 |
|
alephcard |
⊢ ( card ‘ ( ℵ ‘ 𝑦 ) ) = ( ℵ ‘ 𝑦 ) |
| 55 |
54
|
sseq2i |
⊢ ( 𝐴 ⊆ ( card ‘ ( ℵ ‘ 𝑦 ) ) ↔ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 56 |
53 55
|
bitrdi |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( card ‘ 𝐴 ) ⊆ ( card ‘ ( ℵ ‘ 𝑦 ) ) ↔ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 57 |
52 56
|
bitr3d |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( 𝐴 ≼ ( ℵ ‘ 𝑦 ) ↔ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 58 |
45 57
|
imbitrid |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( 𝐴 ∈ ( har ‘ ( ℵ ‘ 𝑦 ) ) → 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 59 |
43 58
|
sylan9r |
⊢ ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) ) → ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 60 |
38 59
|
mtod |
⊢ ( ( ( card ‘ 𝐴 ) = 𝐴 ∧ ( 𝑦 ∈ On ∧ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ) ) → ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 61 |
60
|
rexlimdvaa |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 → ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 62 |
|
onintrab2 |
⊢ ( ∃ 𝑥 ∈ On 𝐴 ⊆ ( ℵ ‘ 𝑥 ) ↔ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) |
| 63 |
8 62
|
sylib |
⊢ ( 𝐴 ∈ On → ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ) |
| 64 |
|
onelon |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝑦 ∈ On ) |
| 65 |
63 64
|
sylan |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝑦 ∈ On ) |
| 66 |
32
|
adantld |
⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ¬ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) ) |
| 67 |
65 66
|
mpcom |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ¬ 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 68 |
48
|
onelssi |
⊢ ( 𝐴 ∈ ( ℵ ‘ 𝑦 ) → 𝐴 ⊆ ( ℵ ‘ 𝑦 ) ) |
| 69 |
67 68
|
nsyl |
⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ¬ 𝐴 ∈ ( ℵ ‘ 𝑦 ) ) |
| 70 |
69
|
nrexdv |
⊢ ( 𝐴 ∈ On → ¬ ∃ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } 𝐴 ∈ ( ℵ ‘ 𝑦 ) ) |
| 71 |
70
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ¬ ∃ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } 𝐴 ∈ ( ℵ ‘ 𝑦 ) ) |
| 72 |
|
alephlim |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) = ∪ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ( ℵ ‘ 𝑦 ) ) |
| 73 |
63 72
|
sylan |
⊢ ( ( 𝐴 ∈ On ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) = ∪ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ( ℵ ‘ 𝑦 ) ) |
| 74 |
73
|
eleq2d |
⊢ ( ( 𝐴 ∈ On ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ 𝐴 ∈ ∪ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ( ℵ ‘ 𝑦 ) ) ) |
| 75 |
|
eliun |
⊢ ( 𝐴 ∈ ∪ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ( ℵ ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } 𝐴 ∈ ( ℵ ‘ 𝑦 ) ) |
| 76 |
74 75
|
bitrdi |
⊢ ( ( 𝐴 ∈ On ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ ∃ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } 𝐴 ∈ ( ℵ ‘ 𝑦 ) ) ) |
| 77 |
71 76
|
mtbird |
⊢ ( ( 𝐴 ∈ On ∧ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 78 |
77
|
ex |
⊢ ( 𝐴 ∈ On → ( Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } → ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 79 |
3 78
|
syl |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } → ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 80 |
61 79
|
jaod |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 81 |
8 17
|
syl |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 82 |
|
alephon |
⊢ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∈ On |
| 83 |
|
onsseleq |
⊢ ( ( 𝐴 ∈ On ∧ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∈ On ) → ( 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∨ 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) |
| 84 |
82 83
|
mpan2 |
⊢ ( 𝐴 ∈ On → ( 𝐴 ⊆ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∨ 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) ) |
| 85 |
81 84
|
mpbid |
⊢ ( 𝐴 ∈ On → ( 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ∨ 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 86 |
85
|
ord |
⊢ ( 𝐴 ∈ On → ( ¬ 𝐴 ∈ ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 87 |
3 80 86
|
sylsyld |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 88 |
87
|
adantl |
⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ( ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 89 |
|
eloni |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → Ord ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) |
| 90 |
|
ordzsl |
⊢ ( Ord ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |
| 91 |
|
3orass |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ↔ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 92 |
90 91
|
bitri |
⊢ ( Ord ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 93 |
89 92
|
sylib |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ∈ On → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 94 |
3 63 93
|
3syl |
⊢ ( ( card ‘ 𝐴 ) = 𝐴 → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 95 |
94
|
adantl |
⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → ( ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = ∅ ∨ ( ∃ 𝑦 ∈ On ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } = suc 𝑦 ∨ Lim ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) ) |
| 96 |
29 88 95
|
mpjaod |
⊢ ( ( ω ⊆ 𝐴 ∧ ( card ‘ 𝐴 ) = 𝐴 ) → 𝐴 = ( ℵ ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ⊆ ( ℵ ‘ 𝑥 ) } ) ) |