| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-card |
⊢ card = ( 𝑥 ∈ V ↦ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑥 } ) |
| 2 |
1
|
funmpt2 |
⊢ Fun card |
| 3 |
|
rabab |
⊢ { 𝑥 ∈ V ∣ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑥 } ∈ V } = { 𝑥 ∣ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑥 } ∈ V } |
| 4 |
1
|
dmmpt |
⊢ dom card = { 𝑥 ∈ V ∣ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑥 } ∈ V } |
| 5 |
|
intexrab |
⊢ ( ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 ↔ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑥 } ∈ V ) |
| 6 |
5
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } = { 𝑥 ∣ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑥 } ∈ V } |
| 7 |
3 4 6
|
3eqtr4i |
⊢ dom card = { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } |
| 8 |
|
df-fn |
⊢ ( card Fn { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ↔ ( Fun card ∧ dom card = { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ) ) |
| 9 |
2 7 8
|
mpbir2an |
⊢ card Fn { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } |
| 10 |
|
simpr |
⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) |
| 11 |
|
vex |
⊢ 𝑤 ∈ V |
| 12 |
10 11
|
eqeltrrdi |
⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ∈ V ) |
| 13 |
|
intex |
⊢ ( { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ≠ ∅ ↔ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ∈ V ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ≠ ∅ ) |
| 15 |
|
rabn0 |
⊢ ( { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ≠ ∅ ↔ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑧 ) |
| 16 |
14 15
|
sylib |
⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → ∃ 𝑦 ∈ On 𝑦 ≈ 𝑧 ) |
| 17 |
|
vex |
⊢ 𝑧 ∈ V |
| 18 |
|
breq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝑧 ) ) |
| 19 |
18
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 ↔ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑧 ) ) |
| 20 |
17 19
|
elab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ↔ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑧 ) |
| 21 |
16 20
|
sylibr |
⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ) |
| 22 |
|
ssrab2 |
⊢ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ⊆ On |
| 23 |
|
oninton |
⊢ ( ( { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ⊆ On ∧ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ≠ ∅ ) → ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ∈ On ) |
| 24 |
22 14 23
|
sylancr |
⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ∈ On ) |
| 25 |
10 24
|
eqeltrd |
⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → 𝑤 ∈ On ) |
| 26 |
21 25
|
jca |
⊢ ( ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) → ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ∧ 𝑤 ∈ On ) ) |
| 27 |
26
|
ssopab2i |
⊢ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) } ⊆ { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ∧ 𝑤 ∈ On ) } |
| 28 |
|
df-card |
⊢ card = ( 𝑧 ∈ V ↦ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) |
| 29 |
|
df-mpt |
⊢ ( 𝑧 ∈ V ↦ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) } |
| 30 |
28 29
|
eqtri |
⊢ card = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ V ∧ 𝑤 = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝑧 } ) } |
| 31 |
|
df-xp |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } × On ) = { 〈 𝑧 , 𝑤 〉 ∣ ( 𝑧 ∈ { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ∧ 𝑤 ∈ On ) } |
| 32 |
27 30 31
|
3sstr4i |
⊢ card ⊆ ( { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } × On ) |
| 33 |
|
dff2 |
⊢ ( card : { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ⟶ On ↔ ( card Fn { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ∧ card ⊆ ( { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } × On ) ) ) |
| 34 |
9 32 33
|
mpbir2an |
⊢ card : { 𝑥 ∣ ∃ 𝑦 ∈ On 𝑦 ≈ 𝑥 } ⟶ On |