| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzennn.1 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
| 2 |
1
|
fzennn |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ≈ ( ◡ 𝐺 ‘ 𝑁 ) ) |
| 3 |
|
carden2b |
⊢ ( ( 1 ... 𝑁 ) ≈ ( ◡ 𝐺 ‘ 𝑁 ) → ( card ‘ ( 1 ... 𝑁 ) ) = ( card ‘ ( ◡ 𝐺 ‘ 𝑁 ) ) ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( card ‘ ( 1 ... 𝑁 ) ) = ( card ‘ ( ◡ 𝐺 ‘ 𝑁 ) ) ) |
| 5 |
|
0z |
⊢ 0 ∈ ℤ |
| 6 |
5 1
|
om2uzf1oi |
⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) |
| 7 |
|
elnn0uz |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 8 |
7
|
biimpi |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 9 |
|
f1ocnvdm |
⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) → ( ◡ 𝐺 ‘ 𝑁 ) ∈ ω ) |
| 10 |
6 8 9
|
sylancr |
⊢ ( 𝑁 ∈ ℕ0 → ( ◡ 𝐺 ‘ 𝑁 ) ∈ ω ) |
| 11 |
|
cardnn |
⊢ ( ( ◡ 𝐺 ‘ 𝑁 ) ∈ ω → ( card ‘ ( ◡ 𝐺 ‘ 𝑁 ) ) = ( ◡ 𝐺 ‘ 𝑁 ) ) |
| 12 |
10 11
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( card ‘ ( ◡ 𝐺 ‘ 𝑁 ) ) = ( ◡ 𝐺 ‘ 𝑁 ) ) |
| 13 |
4 12
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ0 → ( card ‘ ( 1 ... 𝑁 ) ) = ( ◡ 𝐺 ‘ 𝑁 ) ) |