Step |
Hyp |
Ref |
Expression |
1 |
|
cardval3 |
⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) = ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) |
2 |
|
ssrab2 |
⊢ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ⊆ On |
3 |
|
fvex |
⊢ ( card ‘ 𝐴 ) ∈ V |
4 |
1 3
|
eqeltrrdi |
⊢ ( 𝐴 ∈ dom card → ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ∈ V ) |
5 |
|
intex |
⊢ ( { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ≠ ∅ ↔ ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ∈ V ) |
6 |
4 5
|
sylibr |
⊢ ( 𝐴 ∈ dom card → { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ≠ ∅ ) |
7 |
|
onint |
⊢ ( ( { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ⊆ On ∧ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ≠ ∅ ) → ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) |
8 |
2 6 7
|
sylancr |
⊢ ( 𝐴 ∈ dom card → ∩ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) |
9 |
1 8
|
eqeltrd |
⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ) |
10 |
|
breq1 |
⊢ ( 𝑦 = ( card ‘ 𝐴 ) → ( 𝑦 ≈ 𝐴 ↔ ( card ‘ 𝐴 ) ≈ 𝐴 ) ) |
11 |
10
|
elrab |
⊢ ( ( card ‘ 𝐴 ) ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } ↔ ( ( card ‘ 𝐴 ) ∈ On ∧ ( card ‘ 𝐴 ) ≈ 𝐴 ) ) |
12 |
11
|
simprbi |
⊢ ( ( card ‘ 𝐴 ) ∈ { 𝑦 ∈ On ∣ 𝑦 ≈ 𝐴 } → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
13 |
9 12
|
syl |
⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) ≈ 𝐴 ) |