| Step |
Hyp |
Ref |
Expression |
| 1 |
|
numthcor |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ) |
| 2 |
|
onintrab2 |
⊢ ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ↔ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ) |
| 3 |
1 2
|
sylib |
⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ) |
| 4 |
|
onelon |
⊢ ( ( ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ∧ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → 𝑦 ∈ On ) |
| 5 |
4
|
ex |
⊢ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → 𝑦 ∈ On ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → 𝑦 ∈ On ) ) |
| 7 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ≺ 𝑥 ↔ 𝐴 ≺ 𝑦 ) ) |
| 8 |
7
|
onnminsb |
⊢ ( 𝑦 ∈ On → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ¬ 𝐴 ≺ 𝑦 ) ) |
| 9 |
6 8
|
syli |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ¬ 𝐴 ≺ 𝑦 ) ) |
| 10 |
|
vex |
⊢ 𝑦 ∈ V |
| 11 |
|
domtri |
⊢ ( ( 𝑦 ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( 𝑦 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝑦 ) ) |
| 12 |
10 11
|
mpan |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ≼ 𝐴 ↔ ¬ 𝐴 ≺ 𝑦 ) ) |
| 13 |
9 12
|
sylibrd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → 𝑦 ≼ 𝐴 ) ) |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑥 ≺ |
| 16 |
|
nfrab1 |
⊢ Ⅎ 𝑥 { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } |
| 17 |
16
|
nfint |
⊢ Ⅎ 𝑥 ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } |
| 18 |
14 15 17
|
nfbr |
⊢ Ⅎ 𝑥 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } |
| 19 |
|
breq2 |
⊢ ( 𝑥 = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ( 𝐴 ≺ 𝑥 ↔ 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) |
| 20 |
18 19
|
onminsb |
⊢ ( ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 → 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 21 |
1 20
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 22 |
13 21
|
jctird |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → ( 𝑦 ≼ 𝐴 ∧ 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) ) |
| 23 |
|
domsdomtr |
⊢ ( ( 𝑦 ≼ 𝐴 ∧ 𝐴 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) → 𝑦 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 24 |
22 23
|
syl6 |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } → 𝑦 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) |
| 25 |
24
|
ralrimiv |
⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } 𝑦 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |
| 26 |
|
iscard |
⊢ ( ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ↔ ( ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ∈ On ∧ ∀ 𝑦 ∈ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } 𝑦 ≺ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) ) |
| 27 |
3 25 26
|
sylanbrc |
⊢ ( 𝐴 ∈ 𝑉 → ( card ‘ ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) = ∩ { 𝑥 ∈ On ∣ 𝐴 ≺ 𝑥 } ) |