| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( card ‘ 𝐵 ) → 𝐵 ∈ dom card ) |
| 2 |
|
cardon |
⊢ ( card ‘ 𝐵 ) ∈ On |
| 3 |
2
|
oneli |
⊢ ( 𝐴 ∈ ( card ‘ 𝐵 ) → 𝐴 ∈ On ) |
| 4 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≈ 𝐵 ↔ 𝐴 ≈ 𝐵 ) ) |
| 5 |
4
|
onintss |
⊢ ( 𝐴 ∈ On → ( 𝐴 ≈ 𝐵 → ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐵 } ⊆ 𝐴 ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝐴 ∈ ( card ‘ 𝐵 ) → ( 𝐴 ≈ 𝐵 → ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐵 } ⊆ 𝐴 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝐵 ∈ dom card ∧ 𝐴 ∈ ( card ‘ 𝐵 ) ) → ( 𝐴 ≈ 𝐵 → ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐵 } ⊆ 𝐴 ) ) |
| 8 |
|
cardval3 |
⊢ ( 𝐵 ∈ dom card → ( card ‘ 𝐵 ) = ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐵 } ) |
| 9 |
8
|
sseq1d |
⊢ ( 𝐵 ∈ dom card → ( ( card ‘ 𝐵 ) ⊆ 𝐴 ↔ ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐵 } ⊆ 𝐴 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐵 ∈ dom card ∧ 𝐴 ∈ ( card ‘ 𝐵 ) ) → ( ( card ‘ 𝐵 ) ⊆ 𝐴 ↔ ∩ { 𝑥 ∈ On ∣ 𝑥 ≈ 𝐵 } ⊆ 𝐴 ) ) |
| 11 |
7 10
|
sylibrd |
⊢ ( ( 𝐵 ∈ dom card ∧ 𝐴 ∈ ( card ‘ 𝐵 ) ) → ( 𝐴 ≈ 𝐵 → ( card ‘ 𝐵 ) ⊆ 𝐴 ) ) |
| 12 |
|
ontri1 |
⊢ ( ( ( card ‘ 𝐵 ) ∈ On ∧ 𝐴 ∈ On ) → ( ( card ‘ 𝐵 ) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ( card ‘ 𝐵 ) ) ) |
| 13 |
2 3 12
|
sylancr |
⊢ ( 𝐴 ∈ ( card ‘ 𝐵 ) → ( ( card ‘ 𝐵 ) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ( card ‘ 𝐵 ) ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐵 ∈ dom card ∧ 𝐴 ∈ ( card ‘ 𝐵 ) ) → ( ( card ‘ 𝐵 ) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ( card ‘ 𝐵 ) ) ) |
| 15 |
11 14
|
sylibd |
⊢ ( ( 𝐵 ∈ dom card ∧ 𝐴 ∈ ( card ‘ 𝐵 ) ) → ( 𝐴 ≈ 𝐵 → ¬ 𝐴 ∈ ( card ‘ 𝐵 ) ) ) |
| 16 |
15
|
con2d |
⊢ ( ( 𝐵 ∈ dom card ∧ 𝐴 ∈ ( card ‘ 𝐵 ) ) → ( 𝐴 ∈ ( card ‘ 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
| 17 |
16
|
ex |
⊢ ( 𝐵 ∈ dom card → ( 𝐴 ∈ ( card ‘ 𝐵 ) → ( 𝐴 ∈ ( card ‘ 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) ) |
| 18 |
17
|
pm2.43d |
⊢ ( 𝐵 ∈ dom card → ( 𝐴 ∈ ( card ‘ 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) ) |
| 19 |
1 18
|
mpcom |
⊢ ( 𝐴 ∈ ( card ‘ 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) |