Description: The cardinality of a natural number is the number. Corollary 10.23 of TakeutiZaring p. 90. (Contributed by Mario Carneiro, 7-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | cardnn | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝐴 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) | |
2 | onenon | ⊢ ( 𝐴 ∈ On → 𝐴 ∈ dom card ) | |
3 | cardid2 | ⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) ≈ 𝐴 ) | |
4 | 1 2 3 | 3syl | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
5 | nnfi | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) | |
6 | ficardom | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) | |
7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝐴 ) ∈ ω ) |
8 | nneneq | ⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ 𝐴 ∈ ω ) → ( ( card ‘ 𝐴 ) ≈ 𝐴 ↔ ( card ‘ 𝐴 ) = 𝐴 ) ) | |
9 | 7 8 | mpancom | ⊢ ( 𝐴 ∈ ω → ( ( card ‘ 𝐴 ) ≈ 𝐴 ↔ ( card ‘ 𝐴 ) = 𝐴 ) ) |
10 | 4 9 | mpbid | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝐴 ) = 𝐴 ) |