| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cardid2 |
⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
| 2 |
1
|
ensymd |
⊢ ( 𝐴 ∈ dom card → 𝐴 ≈ ( card ‘ 𝐴 ) ) |
| 3 |
|
breq2 |
⊢ ( ( card ‘ 𝐴 ) = ∅ → ( 𝐴 ≈ ( card ‘ 𝐴 ) ↔ 𝐴 ≈ ∅ ) ) |
| 4 |
|
en0 |
⊢ ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ ) |
| 5 |
3 4
|
bitrdi |
⊢ ( ( card ‘ 𝐴 ) = ∅ → ( 𝐴 ≈ ( card ‘ 𝐴 ) ↔ 𝐴 = ∅ ) ) |
| 6 |
2 5
|
syl5ibcom |
⊢ ( 𝐴 ∈ dom card → ( ( card ‘ 𝐴 ) = ∅ → 𝐴 = ∅ ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝐴 = ∅ → ( card ‘ 𝐴 ) = ( card ‘ ∅ ) ) |
| 8 |
|
card0 |
⊢ ( card ‘ ∅ ) = ∅ |
| 9 |
7 8
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( card ‘ 𝐴 ) = ∅ ) |
| 10 |
6 9
|
impbid1 |
⊢ ( 𝐴 ∈ dom card → ( ( card ‘ 𝐴 ) = ∅ ↔ 𝐴 = ∅ ) ) |