Step |
Hyp |
Ref |
Expression |
1 |
|
cardon |
⊢ ( card ‘ 𝐵 ) ∈ On |
2 |
1
|
onelssi |
⊢ ( 𝐴 ∈ ( card ‘ 𝐵 ) → 𝐴 ⊆ ( card ‘ 𝐵 ) ) |
3 |
|
ssdomg |
⊢ ( ( card ‘ 𝐵 ) ∈ On → ( 𝐴 ⊆ ( card ‘ 𝐵 ) → 𝐴 ≼ ( card ‘ 𝐵 ) ) ) |
4 |
1 2 3
|
mpsyl |
⊢ ( 𝐴 ∈ ( card ‘ 𝐵 ) → 𝐴 ≼ ( card ‘ 𝐵 ) ) |
5 |
|
elfvdm |
⊢ ( 𝐴 ∈ ( card ‘ 𝐵 ) → 𝐵 ∈ dom card ) |
6 |
|
cardid2 |
⊢ ( 𝐵 ∈ dom card → ( card ‘ 𝐵 ) ≈ 𝐵 ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ ( card ‘ 𝐵 ) → ( card ‘ 𝐵 ) ≈ 𝐵 ) |
8 |
|
domentr |
⊢ ( ( 𝐴 ≼ ( card ‘ 𝐵 ) ∧ ( card ‘ 𝐵 ) ≈ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
9 |
4 7 8
|
syl2anc |
⊢ ( 𝐴 ∈ ( card ‘ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
10 |
|
cardne |
⊢ ( 𝐴 ∈ ( card ‘ 𝐵 ) → ¬ 𝐴 ≈ 𝐵 ) |
11 |
|
brsdom |
⊢ ( 𝐴 ≺ 𝐵 ↔ ( 𝐴 ≼ 𝐵 ∧ ¬ 𝐴 ≈ 𝐵 ) ) |
12 |
9 10 11
|
sylanbrc |
⊢ ( 𝐴 ∈ ( card ‘ 𝐵 ) → 𝐴 ≺ 𝐵 ) |