Metamath Proof Explorer


Theorem cardsn

Description: A singleton has cardinality one. (Contributed by Mario Carneiro, 10-Jan-2013)

Ref Expression
Assertion cardsn ( 𝐴𝑉 → ( card ‘ { 𝐴 } ) = 1o )

Proof

Step Hyp Ref Expression
1 eqid { 𝐴 } = { 𝐴 }
2 sneq ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } )
3 2 eqeq2d ( 𝑥 = 𝐴 → ( { 𝐴 } = { 𝑥 } ↔ { 𝐴 } = { 𝐴 } ) )
4 3 spcegv ( 𝐴𝑉 → ( { 𝐴 } = { 𝐴 } → ∃ 𝑥 { 𝐴 } = { 𝑥 } ) )
5 1 4 mpi ( 𝐴𝑉 → ∃ 𝑥 { 𝐴 } = { 𝑥 } )
6 card1 ( ( card ‘ { 𝐴 } ) = 1o ↔ ∃ 𝑥 { 𝐴 } = { 𝑥 } )
7 5 6 sylibr ( 𝐴𝑉 → ( card ‘ { 𝐴 } ) = 1o )