Description: A singleton has cardinality one. (Contributed by Mario Carneiro, 10-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cardsn | ⊢ ( 𝐴 ∈ 𝑉 → ( card ‘ { 𝐴 } ) = 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ { 𝐴 } = { 𝐴 } | |
| 2 | sneq | ⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) | |
| 3 | 2 | eqeq2d | ⊢ ( 𝑥 = 𝐴 → ( { 𝐴 } = { 𝑥 } ↔ { 𝐴 } = { 𝐴 } ) ) |
| 4 | 3 | spcegv | ⊢ ( 𝐴 ∈ 𝑉 → ( { 𝐴 } = { 𝐴 } → ∃ 𝑥 { 𝐴 } = { 𝑥 } ) ) |
| 5 | 1 4 | mpi | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 { 𝐴 } = { 𝑥 } ) |
| 6 | card1 | ⊢ ( ( card ‘ { 𝐴 } ) = 1o ↔ ∃ 𝑥 { 𝐴 } = { 𝑥 } ) | |
| 7 | 5 6 | sylibr | ⊢ ( 𝐴 ∈ 𝑉 → ( card ‘ { 𝐴 } ) = 1o ) |