Description: The cardinality of the successor of a finite ordinal (natural number). This theorem does not hold for infinite ordinals; see cardsucinf . (Contributed by NM, 7-Nov-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | cardsucnn | ⊢ ( 𝐴 ∈ ω → ( card ‘ suc 𝐴 ) = suc ( card ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2 | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) | |
2 | cardnn | ⊢ ( suc 𝐴 ∈ ω → ( card ‘ suc 𝐴 ) = suc 𝐴 ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ω → ( card ‘ suc 𝐴 ) = suc 𝐴 ) |
4 | cardnn | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝐴 ) = 𝐴 ) | |
5 | suceq | ⊢ ( ( card ‘ 𝐴 ) = 𝐴 → suc ( card ‘ 𝐴 ) = suc 𝐴 ) | |
6 | 4 5 | syl | ⊢ ( 𝐴 ∈ ω → suc ( card ‘ 𝐴 ) = suc 𝐴 ) |
7 | 3 6 | eqtr4d | ⊢ ( 𝐴 ∈ ω → ( card ‘ suc 𝐴 ) = suc ( card ‘ 𝐴 ) ) |