Step |
Hyp |
Ref |
Expression |
1 |
|
cardon |
⊢ ( card ‘ 𝐴 ) ∈ On |
2 |
1
|
oneli |
⊢ ( 𝑥 ∈ ( card ‘ 𝐴 ) → 𝑥 ∈ On ) |
3 |
2
|
pm4.71ri |
⊢ ( 𝑥 ∈ ( card ‘ 𝐴 ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ ( card ‘ 𝐴 ) ) ) |
4 |
|
cardsdomel |
⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ∈ dom card ) → ( 𝑥 ≺ 𝐴 ↔ 𝑥 ∈ ( card ‘ 𝐴 ) ) ) |
5 |
4
|
ancoms |
⊢ ( ( 𝐴 ∈ dom card ∧ 𝑥 ∈ On ) → ( 𝑥 ≺ 𝐴 ↔ 𝑥 ∈ ( card ‘ 𝐴 ) ) ) |
6 |
5
|
pm5.32da |
⊢ ( 𝐴 ∈ dom card → ( ( 𝑥 ∈ On ∧ 𝑥 ≺ 𝐴 ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ∈ ( card ‘ 𝐴 ) ) ) ) |
7 |
3 6
|
bitr4id |
⊢ ( 𝐴 ∈ dom card → ( 𝑥 ∈ ( card ‘ 𝐴 ) ↔ ( 𝑥 ∈ On ∧ 𝑥 ≺ 𝐴 ) ) ) |
8 |
7
|
abbi2dv |
⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) = { 𝑥 ∣ ( 𝑥 ∈ On ∧ 𝑥 ≺ 𝐴 ) } ) |
9 |
|
df-rab |
⊢ { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } = { 𝑥 ∣ ( 𝑥 ∈ On ∧ 𝑥 ≺ 𝐴 ) } |
10 |
8 9
|
eqtr4di |
⊢ ( 𝐴 ∈ dom card → ( card ‘ 𝐴 ) = { 𝑥 ∈ On ∣ 𝑥 ≺ 𝐴 } ) |