Description: Case disjunction according to the value of ph . (Contributed by NM, 25-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cases.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
cases.2 | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ 𝜃 ) ) | ||
Assertion | cases | ⊢ ( 𝜓 ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( ¬ 𝜑 ∧ 𝜃 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cases.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
2 | cases.2 | ⊢ ( ¬ 𝜑 → ( 𝜓 ↔ 𝜃 ) ) | |
3 | exmid | ⊢ ( 𝜑 ∨ ¬ 𝜑 ) | |
4 | 3 | biantrur | ⊢ ( 𝜓 ↔ ( ( 𝜑 ∨ ¬ 𝜑 ) ∧ 𝜓 ) ) |
5 | andir | ⊢ ( ( ( 𝜑 ∨ ¬ 𝜑 ) ∧ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜓 ) ) ) | |
6 | 1 | pm5.32i | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ 𝜒 ) ) |
7 | 2 | pm5.32i | ⊢ ( ( ¬ 𝜑 ∧ 𝜓 ) ↔ ( ¬ 𝜑 ∧ 𝜃 ) ) |
8 | 6 7 | orbi12i | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜓 ) ) ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( ¬ 𝜑 ∧ 𝜃 ) ) ) |
9 | 4 5 8 | 3bitri | ⊢ ( 𝜓 ↔ ( ( 𝜑 ∧ 𝜒 ) ∨ ( ¬ 𝜑 ∧ 𝜃 ) ) ) |