Step |
Hyp |
Ref |
Expression |
1 |
|
pm4.83 |
⊢ ( ( ( 𝜑 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ∧ ( ¬ 𝜑 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) |
2 |
|
dedlema |
⊢ ( 𝜑 → ( 𝜓 ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) |
3 |
2
|
pm5.74i |
⊢ ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) |
4 |
|
dedlemb |
⊢ ( ¬ 𝜑 → ( 𝜒 ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) |
5 |
4
|
pm5.74i |
⊢ ( ( ¬ 𝜑 → 𝜒 ) ↔ ( ¬ 𝜑 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) |
6 |
3 5
|
anbi12i |
⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ↔ ( ( 𝜑 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ∧ ( ¬ 𝜑 → ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) ) ) |
7 |
|
ancom |
⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜓 ∧ 𝜑 ) ) |
8 |
|
ancom |
⊢ ( ( ¬ 𝜑 ∧ 𝜒 ) ↔ ( 𝜒 ∧ ¬ 𝜑 ) ) |
9 |
7 8
|
orbi12i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ( 𝜓 ∧ 𝜑 ) ∨ ( 𝜒 ∧ ¬ 𝜑 ) ) ) |
10 |
1 6 9
|
3bitr4ri |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |