| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm3.4 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
| 2 |
|
pm2.24 |
⊢ ( 𝜑 → ( ¬ 𝜑 → 𝜒 ) ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ¬ 𝜑 → 𝜒 ) ) |
| 4 |
1 3
|
jca |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |
| 5 |
|
pm2.21 |
⊢ ( ¬ 𝜑 → ( 𝜑 → 𝜓 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( ¬ 𝜑 ∧ 𝜒 ) → ( 𝜑 → 𝜓 ) ) |
| 7 |
|
pm3.4 |
⊢ ( ( ¬ 𝜑 ∧ 𝜒 ) → ( ¬ 𝜑 → 𝜒 ) ) |
| 8 |
6 7
|
jca |
⊢ ( ( ¬ 𝜑 ∧ 𝜒 ) → ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |
| 9 |
4 8
|
jaoi |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) → ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |
| 10 |
|
pm2.27 |
⊢ ( 𝜑 → ( ( 𝜑 → 𝜓 ) → 𝜓 ) ) |
| 11 |
10
|
imdistani |
⊢ ( ( 𝜑 ∧ ( 𝜑 → 𝜓 ) ) → ( 𝜑 ∧ 𝜓 ) ) |
| 12 |
11
|
orcd |
⊢ ( ( 𝜑 ∧ ( 𝜑 → 𝜓 ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
| 13 |
12
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
| 14 |
|
pm2.27 |
⊢ ( ¬ 𝜑 → ( ( ¬ 𝜑 → 𝜒 ) → 𝜒 ) ) |
| 15 |
14
|
imdistani |
⊢ ( ( ¬ 𝜑 ∧ ( ¬ 𝜑 → 𝜒 ) ) → ( ¬ 𝜑 ∧ 𝜒 ) ) |
| 16 |
15
|
olcd |
⊢ ( ( ¬ 𝜑 ∧ ( ¬ 𝜑 → 𝜒 ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
| 17 |
16
|
adantrl |
⊢ ( ( ¬ 𝜑 ∧ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
| 18 |
13 17
|
pm2.61ian |
⊢ ( ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) → ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ) |
| 19 |
9 18
|
impbii |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ 𝜒 ) ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( ¬ 𝜑 → 𝜒 ) ) ) |