Step |
Hyp |
Ref |
Expression |
1 |
|
2on |
⊢ 2o ∈ On |
2 |
|
eqid |
⊢ ( SetCat ‘ 2o ) = ( SetCat ‘ 2o ) |
3 |
2
|
setccat |
⊢ ( 2o ∈ On → ( SetCat ‘ 2o ) ∈ Cat ) |
4 |
1 3
|
ax-mp |
⊢ ( SetCat ‘ 2o ) ∈ Cat |
5 |
1
|
a1i |
⊢ ( ⊤ → 2o ∈ On ) |
6 |
|
eqid |
⊢ ( Base ‘ ( SetCat ‘ 2o ) ) = ( Base ‘ ( SetCat ‘ 2o ) ) |
7 |
|
eqid |
⊢ ( Hom ‘ ( SetCat ‘ 2o ) ) = ( Hom ‘ ( SetCat ‘ 2o ) ) |
8 |
|
0ex |
⊢ ∅ ∈ V |
9 |
8
|
prid1 |
⊢ ∅ ∈ { ∅ , { ∅ } } |
10 |
|
df2o2 |
⊢ 2o = { ∅ , { ∅ } } |
11 |
9 10
|
eleqtrri |
⊢ ∅ ∈ 2o |
12 |
11
|
a1i |
⊢ ( ⊤ → ∅ ∈ 2o ) |
13 |
|
p0ex |
⊢ { ∅ } ∈ V |
14 |
13
|
prid2 |
⊢ { ∅ } ∈ { ∅ , { ∅ } } |
15 |
14 10
|
eleqtrri |
⊢ { ∅ } ∈ 2o |
16 |
15
|
a1i |
⊢ ( ⊤ → { ∅ } ∈ 2o ) |
17 |
|
0nep0 |
⊢ ∅ ≠ { ∅ } |
18 |
17
|
a1i |
⊢ ( ⊤ → ∅ ≠ { ∅ } ) |
19 |
2 5 6 7 12 16 18
|
cat1lem |
⊢ ( ⊤ → ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
20 |
19
|
mptru |
⊢ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) |
21 |
|
fvexd |
⊢ ( 𝑐 = ( SetCat ‘ 2o ) → ( Base ‘ 𝑐 ) ∈ V ) |
22 |
|
fveq2 |
⊢ ( 𝑐 = ( SetCat ‘ 2o ) → ( Base ‘ 𝑐 ) = ( Base ‘ ( SetCat ‘ 2o ) ) ) |
23 |
|
fvexd |
⊢ ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) → ( Hom ‘ 𝑐 ) ∈ V ) |
24 |
|
fveq2 |
⊢ ( 𝑐 = ( SetCat ‘ 2o ) → ( Hom ‘ 𝑐 ) = ( Hom ‘ ( SetCat ‘ 2o ) ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) → ( Hom ‘ 𝑐 ) = ( Hom ‘ ( SetCat ‘ 2o ) ) ) |
26 |
|
oveq |
⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( 𝑥 ℎ 𝑦 ) = ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ) |
27 |
|
oveq |
⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( 𝑧 ℎ 𝑤 ) = ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) |
28 |
26 27
|
ineq12d |
⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) = ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ) |
29 |
28
|
neeq1d |
⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ↔ ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ) ) |
30 |
29
|
anbi1d |
⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
31 |
30
|
2rexbidv |
⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
32 |
31
|
2rexbidv |
⊢ ( ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
33 |
32
|
adantl |
⊢ ( ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) ∧ ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
34 |
|
pm4.61 |
⊢ ( ¬ ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
35 |
34
|
2rexbii |
⊢ ( ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ¬ ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
36 |
|
rexnal2 |
⊢ ( ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ¬ ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ¬ ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
37 |
35 36
|
bitr3i |
⊢ ( ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ¬ ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
38 |
37
|
2rexbii |
⊢ ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ¬ ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
39 |
|
rexnal2 |
⊢ ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ¬ ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
40 |
38 39
|
bitri |
⊢ ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
41 |
40
|
a1i |
⊢ ( ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) ∧ ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
42 |
|
rexeq |
⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
43 |
42
|
2rexbidv |
⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
44 |
43
|
rexbidv |
⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
45 |
|
rexeq |
⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
46 |
45
|
2rexbidv |
⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
47 |
|
rexeq |
⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
48 |
47
|
rexeqbi1dv |
⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
49 |
44 46 48
|
3bitrd |
⊢ ( 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
50 |
49
|
ad2antlr |
⊢ ( ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) ∧ ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) ) → ( ∃ 𝑥 ∈ 𝑏 ∃ 𝑦 ∈ 𝑏 ∃ 𝑧 ∈ 𝑏 ∃ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
51 |
33 41 50
|
3bitr3d |
⊢ ( ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) ∧ ℎ = ( Hom ‘ ( SetCat ‘ 2o ) ) ) → ( ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
52 |
23 25 51
|
sbcied2 |
⊢ ( ( 𝑐 = ( SetCat ‘ 2o ) ∧ 𝑏 = ( Base ‘ ( SetCat ‘ 2o ) ) ) → ( [ ( Hom ‘ 𝑐 ) / ℎ ] ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
53 |
21 22 52
|
sbcied2 |
⊢ ( 𝑐 = ( SetCat ‘ 2o ) → ( [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
54 |
53
|
rspcev |
⊢ ( ( ( SetCat ‘ 2o ) ∈ Cat ∧ ∃ 𝑥 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑦 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑧 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ∃ 𝑤 ∈ ( Base ‘ ( SetCat ‘ 2o ) ) ( ( ( 𝑥 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑦 ) ∩ ( 𝑧 ( Hom ‘ ( SetCat ‘ 2o ) ) 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) → ∃ 𝑐 ∈ Cat [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
55 |
4 20 54
|
mp2an |
⊢ ∃ 𝑐 ∈ Cat [ ( Base ‘ 𝑐 ) / 𝑏 ] [ ( Hom ‘ 𝑐 ) / ℎ ] ¬ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ∀ 𝑧 ∈ 𝑏 ∀ 𝑤 ∈ 𝑏 ( ( ( 𝑥 ℎ 𝑦 ) ∩ ( 𝑧 ℎ 𝑤 ) ) ≠ ∅ → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) |