Step |
Hyp |
Ref |
Expression |
1 |
|
cat1lem.1 |
⊢ 𝐶 = ( SetCat ‘ 𝑈 ) |
2 |
|
cat1lem.2 |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
cat1lem.3 |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
cat1lem.4 |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
5 |
|
cat1lem.5 |
⊢ ( 𝜑 → ∅ ∈ 𝑈 ) |
6 |
|
cat1lem.6 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) |
7 |
|
cat1lem.7 |
⊢ ( 𝜑 → ∅ ≠ 𝑌 ) |
8 |
1 2
|
setcbas |
⊢ ( 𝜑 → 𝑈 = ( Base ‘ 𝐶 ) ) |
9 |
8 3
|
eqtr4di |
⊢ ( 𝜑 → 𝑈 = 𝐵 ) |
10 |
5 9
|
eleqtrd |
⊢ ( 𝜑 → ∅ ∈ 𝐵 ) |
11 |
6 9
|
eleqtrd |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
12 |
|
f0 |
⊢ ∅ : ∅ ⟶ ∅ |
13 |
1 2 4 5 5
|
elsetchom |
⊢ ( 𝜑 → ( ∅ ∈ ( ∅ 𝐻 ∅ ) ↔ ∅ : ∅ ⟶ ∅ ) ) |
14 |
12 13
|
mpbiri |
⊢ ( 𝜑 → ∅ ∈ ( ∅ 𝐻 ∅ ) ) |
15 |
|
f0 |
⊢ ∅ : ∅ ⟶ 𝑌 |
16 |
1 2 4 5 6
|
elsetchom |
⊢ ( 𝜑 → ( ∅ ∈ ( ∅ 𝐻 𝑌 ) ↔ ∅ : ∅ ⟶ 𝑌 ) ) |
17 |
15 16
|
mpbiri |
⊢ ( 𝜑 → ∅ ∈ ( ∅ 𝐻 𝑌 ) ) |
18 |
|
inelcm |
⊢ ( ( ∅ ∈ ( ∅ 𝐻 ∅ ) ∧ ∅ ∈ ( ∅ 𝐻 𝑌 ) ) → ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ ) |
19 |
14 17 18
|
syl2anc |
⊢ ( 𝜑 → ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ ) |
20 |
7
|
neneqd |
⊢ ( 𝜑 → ¬ ∅ = 𝑌 ) |
21 |
20
|
intnand |
⊢ ( 𝜑 → ¬ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) |
22 |
|
oveq1 |
⊢ ( 𝑧 = ∅ → ( 𝑧 𝐻 𝑤 ) = ( ∅ 𝐻 𝑤 ) ) |
23 |
22
|
ineq2d |
⊢ ( 𝑧 = ∅ → ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) = ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ) |
24 |
23
|
neeq1d |
⊢ ( 𝑧 = ∅ → ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ↔ ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ≠ ∅ ) ) |
25 |
|
eqeq2 |
⊢ ( 𝑧 = ∅ → ( ∅ = 𝑧 ↔ ∅ = ∅ ) ) |
26 |
25
|
anbi1d |
⊢ ( 𝑧 = ∅ → ( ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ↔ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ) ) |
27 |
26
|
notbid |
⊢ ( 𝑧 = ∅ → ( ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ↔ ¬ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ) ) |
28 |
24 27
|
anbi12d |
⊢ ( 𝑧 = ∅ → ( ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ↔ ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ) ) ) |
29 |
|
oveq2 |
⊢ ( 𝑤 = 𝑌 → ( ∅ 𝐻 𝑤 ) = ( ∅ 𝐻 𝑌 ) ) |
30 |
29
|
ineq2d |
⊢ ( 𝑤 = 𝑌 → ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) = ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ) |
31 |
30
|
neeq1d |
⊢ ( 𝑤 = 𝑌 → ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ≠ ∅ ↔ ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ ) ) |
32 |
|
eqeq2 |
⊢ ( 𝑤 = 𝑌 → ( ∅ = 𝑤 ↔ ∅ = 𝑌 ) ) |
33 |
32
|
anbi2d |
⊢ ( 𝑤 = 𝑌 → ( ( ∅ = ∅ ∧ ∅ = 𝑤 ) ↔ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) ) |
34 |
33
|
notbid |
⊢ ( 𝑤 = 𝑌 → ( ¬ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ↔ ¬ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) ) |
35 |
31 34
|
anbi12d |
⊢ ( 𝑤 = 𝑌 → ( ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ) ↔ ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ ∧ ¬ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) ) ) |
36 |
28 35
|
rspc2ev |
⊢ ( ( ∅ ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ ∧ ¬ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) ) → ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) |
37 |
10 11 19 21 36
|
syl112anc |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) |
38 |
|
oveq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 𝐻 𝑦 ) = ( ∅ 𝐻 𝑦 ) ) |
39 |
38
|
ineq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) = ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ) |
40 |
39
|
neeq1d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ↔ ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ) ) |
41 |
|
eqeq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 = 𝑧 ↔ ∅ = 𝑧 ) ) |
42 |
41
|
anbi1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ↔ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
43 |
42
|
notbid |
⊢ ( 𝑥 = ∅ → ( ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ↔ ¬ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
44 |
40 43
|
anbi12d |
⊢ ( 𝑥 = ∅ → ( ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
45 |
44
|
2rexbidv |
⊢ ( 𝑥 = ∅ → ( ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
46 |
|
oveq2 |
⊢ ( 𝑦 = ∅ → ( ∅ 𝐻 𝑦 ) = ( ∅ 𝐻 ∅ ) ) |
47 |
46
|
ineq1d |
⊢ ( 𝑦 = ∅ → ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) = ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ) |
48 |
47
|
neeq1d |
⊢ ( 𝑦 = ∅ → ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ↔ ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ) ) |
49 |
|
eqeq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 = 𝑤 ↔ ∅ = 𝑤 ) ) |
50 |
49
|
anbi2d |
⊢ ( 𝑦 = ∅ → ( ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ↔ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) |
51 |
50
|
notbid |
⊢ ( 𝑦 = ∅ → ( ¬ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ↔ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) |
52 |
48 51
|
anbi12d |
⊢ ( 𝑦 = ∅ → ( ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) ) |
53 |
52
|
2rexbidv |
⊢ ( 𝑦 = ∅ → ( ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) ) |
54 |
45 53
|
rspc2ev |
⊢ ( ( ∅ ∈ 𝐵 ∧ ∅ ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
55 |
10 10 37 54
|
syl3anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ 𝐵 ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |