Metamath Proof Explorer


Theorem cat1lem

Description: The category of sets in a "universe" containing the empty set and another set does not have pairwise disjoint hom-sets as required in Axiom CAT 1 in Lang p. 53. Lemma for cat1 . (Contributed by Zhi Wang, 15-Sep-2024)

Ref Expression
Hypotheses cat1lem.1 𝐶 = ( SetCat ‘ 𝑈 )
cat1lem.2 ( 𝜑𝑈𝑉 )
cat1lem.3 𝐵 = ( Base ‘ 𝐶 )
cat1lem.4 𝐻 = ( Hom ‘ 𝐶 )
cat1lem.5 ( 𝜑 → ∅ ∈ 𝑈 )
cat1lem.6 ( 𝜑𝑌𝑈 )
cat1lem.7 ( 𝜑 → ∅ ≠ 𝑌 )
Assertion cat1lem ( 𝜑 → ∃ 𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝐵 ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) )

Proof

Step Hyp Ref Expression
1 cat1lem.1 𝐶 = ( SetCat ‘ 𝑈 )
2 cat1lem.2 ( 𝜑𝑈𝑉 )
3 cat1lem.3 𝐵 = ( Base ‘ 𝐶 )
4 cat1lem.4 𝐻 = ( Hom ‘ 𝐶 )
5 cat1lem.5 ( 𝜑 → ∅ ∈ 𝑈 )
6 cat1lem.6 ( 𝜑𝑌𝑈 )
7 cat1lem.7 ( 𝜑 → ∅ ≠ 𝑌 )
8 1 2 setcbas ( 𝜑𝑈 = ( Base ‘ 𝐶 ) )
9 8 3 eqtr4di ( 𝜑𝑈 = 𝐵 )
10 5 9 eleqtrd ( 𝜑 → ∅ ∈ 𝐵 )
11 6 9 eleqtrd ( 𝜑𝑌𝐵 )
12 f0 ∅ : ∅ ⟶ ∅
13 1 2 4 5 5 elsetchom ( 𝜑 → ( ∅ ∈ ( ∅ 𝐻 ∅ ) ↔ ∅ : ∅ ⟶ ∅ ) )
14 12 13 mpbiri ( 𝜑 → ∅ ∈ ( ∅ 𝐻 ∅ ) )
15 f0 ∅ : ∅ ⟶ 𝑌
16 1 2 4 5 6 elsetchom ( 𝜑 → ( ∅ ∈ ( ∅ 𝐻 𝑌 ) ↔ ∅ : ∅ ⟶ 𝑌 ) )
17 15 16 mpbiri ( 𝜑 → ∅ ∈ ( ∅ 𝐻 𝑌 ) )
18 inelcm ( ( ∅ ∈ ( ∅ 𝐻 ∅ ) ∧ ∅ ∈ ( ∅ 𝐻 𝑌 ) ) → ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ )
19 14 17 18 syl2anc ( 𝜑 → ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ )
20 7 neneqd ( 𝜑 → ¬ ∅ = 𝑌 )
21 20 intnand ( 𝜑 → ¬ ( ∅ = ∅ ∧ ∅ = 𝑌 ) )
22 oveq1 ( 𝑧 = ∅ → ( 𝑧 𝐻 𝑤 ) = ( ∅ 𝐻 𝑤 ) )
23 22 ineq2d ( 𝑧 = ∅ → ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) = ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) )
24 23 neeq1d ( 𝑧 = ∅ → ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ↔ ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ≠ ∅ ) )
25 eqeq2 ( 𝑧 = ∅ → ( ∅ = 𝑧 ↔ ∅ = ∅ ) )
26 25 anbi1d ( 𝑧 = ∅ → ( ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ↔ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ) )
27 26 notbid ( 𝑧 = ∅ → ( ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ↔ ¬ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ) )
28 24 27 anbi12d ( 𝑧 = ∅ → ( ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ↔ ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ) ) )
29 oveq2 ( 𝑤 = 𝑌 → ( ∅ 𝐻 𝑤 ) = ( ∅ 𝐻 𝑌 ) )
30 29 ineq2d ( 𝑤 = 𝑌 → ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) = ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) )
31 30 neeq1d ( 𝑤 = 𝑌 → ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ≠ ∅ ↔ ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ ) )
32 eqeq2 ( 𝑤 = 𝑌 → ( ∅ = 𝑤 ↔ ∅ = 𝑌 ) )
33 32 anbi2d ( 𝑤 = 𝑌 → ( ( ∅ = ∅ ∧ ∅ = 𝑤 ) ↔ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) )
34 33 notbid ( 𝑤 = 𝑌 → ( ¬ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ↔ ¬ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) )
35 31 34 anbi12d ( 𝑤 = 𝑌 → ( ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = ∅ ∧ ∅ = 𝑤 ) ) ↔ ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ ∧ ¬ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) ) )
36 28 35 rspc2ev ( ( ∅ ∈ 𝐵𝑌𝐵 ∧ ( ( ( ∅ 𝐻 ∅ ) ∩ ( ∅ 𝐻 𝑌 ) ) ≠ ∅ ∧ ¬ ( ∅ = ∅ ∧ ∅ = 𝑌 ) ) ) → ∃ 𝑧𝐵𝑤𝐵 ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) )
37 10 11 19 21 36 syl112anc ( 𝜑 → ∃ 𝑧𝐵𝑤𝐵 ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) )
38 oveq1 ( 𝑥 = ∅ → ( 𝑥 𝐻 𝑦 ) = ( ∅ 𝐻 𝑦 ) )
39 38 ineq1d ( 𝑥 = ∅ → ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) = ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) )
40 39 neeq1d ( 𝑥 = ∅ → ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ↔ ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ) )
41 eqeq1 ( 𝑥 = ∅ → ( 𝑥 = 𝑧 ↔ ∅ = 𝑧 ) )
42 41 anbi1d ( 𝑥 = ∅ → ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) ↔ ( ∅ = 𝑧𝑦 = 𝑤 ) ) )
43 42 notbid ( 𝑥 = ∅ → ( ¬ ( 𝑥 = 𝑧𝑦 = 𝑤 ) ↔ ¬ ( ∅ = 𝑧𝑦 = 𝑤 ) ) )
44 40 43 anbi12d ( 𝑥 = ∅ → ( ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ↔ ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧𝑦 = 𝑤 ) ) ) )
45 44 2rexbidv ( 𝑥 = ∅ → ( ∃ 𝑧𝐵𝑤𝐵 ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) ↔ ∃ 𝑧𝐵𝑤𝐵 ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧𝑦 = 𝑤 ) ) ) )
46 oveq2 ( 𝑦 = ∅ → ( ∅ 𝐻 𝑦 ) = ( ∅ 𝐻 ∅ ) )
47 46 ineq1d ( 𝑦 = ∅ → ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) = ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) )
48 47 neeq1d ( 𝑦 = ∅ → ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ↔ ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ) )
49 eqeq1 ( 𝑦 = ∅ → ( 𝑦 = 𝑤 ↔ ∅ = 𝑤 ) )
50 49 anbi2d ( 𝑦 = ∅ → ( ( ∅ = 𝑧𝑦 = 𝑤 ) ↔ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) )
51 50 notbid ( 𝑦 = ∅ → ( ¬ ( ∅ = 𝑧𝑦 = 𝑤 ) ↔ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) )
52 48 51 anbi12d ( 𝑦 = ∅ → ( ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧𝑦 = 𝑤 ) ) ↔ ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) )
53 52 2rexbidv ( 𝑦 = ∅ → ( ∃ 𝑧𝐵𝑤𝐵 ( ( ( ∅ 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧𝑦 = 𝑤 ) ) ↔ ∃ 𝑧𝐵𝑤𝐵 ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) )
54 45 53 rspc2ev ( ( ∅ ∈ 𝐵 ∧ ∅ ∈ 𝐵 ∧ ∃ 𝑧𝐵𝑤𝐵 ( ( ( ∅ 𝐻 ∅ ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( ∅ = 𝑧 ∧ ∅ = 𝑤 ) ) ) → ∃ 𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝐵 ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) )
55 10 10 37 54 syl3anc ( 𝜑 → ∃ 𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝐵 ( ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑧 𝐻 𝑤 ) ) ≠ ∅ ∧ ¬ ( 𝑥 = 𝑧𝑦 = 𝑤 ) ) )