Step |
Hyp |
Ref |
Expression |
1 |
|
catcocl.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
catcocl.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
catcocl.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
catcocl.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
|
catcocl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
catcocl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
catcocl.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
|
catcocl.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
9 |
|
catcocl.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) |
10 |
|
catass.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
11 |
|
catass.g |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝑍 𝐻 𝑊 ) ) |
12 |
1 2 3
|
iscat |
⊢ ( 𝐶 ∈ Cat → ( 𝐶 ∈ Cat ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
13 |
12
|
ibi |
⊢ ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
14 |
4 13
|
syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑌 ∈ 𝐵 ) |
16 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑍 ∈ 𝐵 ) |
17 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
18 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑥 = 𝑋 ) |
19 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑦 = 𝑌 ) |
20 |
18 19
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
21 |
17 20
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) ) |
22 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) |
23 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → 𝑦 = 𝑌 ) |
24 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → 𝑧 = 𝑍 ) |
25 |
23 24
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑌 𝐻 𝑍 ) ) |
26 |
22 25
|
eleqtrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → 𝐺 ∈ ( 𝑦 𝐻 𝑧 ) ) |
27 |
10
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝑊 ∈ 𝐵 ) |
28 |
11
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → 𝐾 ∈ ( 𝑍 𝐻 𝑊 ) ) |
29 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → 𝑧 = 𝑍 ) |
30 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → 𝑤 = 𝑊 ) |
31 |
29 30
|
oveq12d |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑍 𝐻 𝑊 ) ) |
32 |
28 31
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → 𝐾 ∈ ( 𝑧 𝐻 𝑤 ) ) |
33 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑥 = 𝑋 ) |
34 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑦 = 𝑌 ) |
35 |
33 34
|
opeq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑋 , 𝑌 〉 ) |
36 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑤 = 𝑊 ) |
37 |
35 36
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) ) |
38 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑧 = 𝑍 ) |
39 |
34 38
|
opeq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 〈 𝑦 , 𝑧 〉 = 〈 𝑌 , 𝑍 〉 ) |
40 |
39 36
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) = ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) ) |
41 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑘 = 𝐾 ) |
42 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑔 = 𝐺 ) |
43 |
40 41 42
|
oveq123d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) = ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ) |
44 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑓 = 𝐹 ) |
45 |
37 43 44
|
oveq123d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) ) |
46 |
33 38
|
opeq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 〈 𝑥 , 𝑧 〉 = 〈 𝑋 , 𝑍 〉 ) |
47 |
46 36
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) = ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ) |
48 |
35 38
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) ) |
49 |
48 42 44
|
oveq123d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
50 |
47 41 49
|
oveq123d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) |
51 |
45 50
|
eqeq12d |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ↔ ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
52 |
32 51
|
rspcdv |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → ( ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
53 |
27 52
|
rspcimdv |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
54 |
53
|
adantld |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
55 |
26 54
|
rspcimdv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
56 |
21 55
|
rspcimdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
57 |
16 56
|
rspcimdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
58 |
15 57
|
rspcimdv |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
59 |
58
|
adantld |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
60 |
5 59
|
rspcimdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
61 |
14 60
|
mpd |
⊢ ( 𝜑 → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) |