Metamath Proof Explorer


Theorem catcbascl

Description: An element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl . (Contributed by AV, 14-Oct-2024)

Ref Expression
Hypotheses catcbascl.c 𝐶 = ( CatCat ‘ 𝑈 )
catcbascl.b 𝐵 = ( Base ‘ 𝐶 )
catcbascl.u ( 𝜑𝑈 ∈ WUni )
catcbascl.x ( 𝜑𝑋𝐵 )
Assertion catcbascl ( 𝜑𝑋𝑈 )

Proof

Step Hyp Ref Expression
1 catcbascl.c 𝐶 = ( CatCat ‘ 𝑈 )
2 catcbascl.b 𝐵 = ( Base ‘ 𝐶 )
3 catcbascl.u ( 𝜑𝑈 ∈ WUni )
4 catcbascl.x ( 𝜑𝑋𝐵 )
5 1 2 3 catcbas ( 𝜑𝐵 = ( 𝑈 ∩ Cat ) )
6 4 5 eleqtrd ( 𝜑𝑋 ∈ ( 𝑈 ∩ Cat ) )
7 6 elin1d ( 𝜑𝑋𝑈 )