Metamath Proof Explorer


Theorem catccat

Description: The category of categories is a category, see remark 3.48 in Adamek p. 40. (Clearly it cannot be an element of itself, hence it is " U -large".) (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypothesis catccat.c 𝐶 = ( CatCat ‘ 𝑈 )
Assertion catccat ( 𝑈𝑉𝐶 ∈ Cat )

Proof

Step Hyp Ref Expression
1 catccat.c 𝐶 = ( CatCat ‘ 𝑈 )
2 eqid ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 )
3 1 2 catccatid ( 𝑈𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( idfunc𝑥 ) ) ) )
4 3 simpld ( 𝑈𝑉𝐶 ∈ Cat )