Metamath Proof Explorer


Theorem catcccocl

Description: The composition operation of an element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl . (Contributed by AV, 14-Oct-2024)

Ref Expression
Hypotheses catcbascl.c 𝐶 = ( CatCat ‘ 𝑈 )
catcbascl.b 𝐵 = ( Base ‘ 𝐶 )
catcbascl.u ( 𝜑𝑈 ∈ WUni )
catcbascl.x ( 𝜑𝑋𝐵 )
Assertion catcccocl ( 𝜑 → ( comp ‘ 𝑋 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 catcbascl.c 𝐶 = ( CatCat ‘ 𝑈 )
2 catcbascl.b 𝐵 = ( Base ‘ 𝐶 )
3 catcbascl.u ( 𝜑𝑈 ∈ WUni )
4 catcbascl.x ( 𝜑𝑋𝐵 )
5 ccoid comp = Slot ( comp ‘ ndx )
6 1 2 3 4 5 catcslotelcl ( 𝜑 → ( comp ‘ 𝑋 ) ∈ 𝑈 )