Metamath Proof Explorer


Theorem catchom

Description: Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catcbas.c 𝐶 = ( CatCat ‘ 𝑈 )
catcbas.b 𝐵 = ( Base ‘ 𝐶 )
catcbas.u ( 𝜑𝑈𝑉 )
catchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
catchom.x ( 𝜑𝑋𝐵 )
catchom.y ( 𝜑𝑌𝐵 )
Assertion catchom ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 Func 𝑌 ) )

Proof

Step Hyp Ref Expression
1 catcbas.c 𝐶 = ( CatCat ‘ 𝑈 )
2 catcbas.b 𝐵 = ( Base ‘ 𝐶 )
3 catcbas.u ( 𝜑𝑈𝑉 )
4 catchomfval.h 𝐻 = ( Hom ‘ 𝐶 )
5 catchom.x ( 𝜑𝑋𝐵 )
6 catchom.y ( 𝜑𝑌𝐵 )
7 1 2 3 4 catchomfval ( 𝜑𝐻 = ( 𝑥𝐵 , 𝑦𝐵 ↦ ( 𝑥 Func 𝑦 ) ) )
8 oveq12 ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑥 Func 𝑦 ) = ( 𝑋 Func 𝑌 ) )
9 8 adantl ( ( 𝜑 ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → ( 𝑥 Func 𝑦 ) = ( 𝑋 Func 𝑌 ) )
10 ovexd ( 𝜑 → ( 𝑋 Func 𝑌 ) ∈ V )
11 7 9 5 6 10 ovmpod ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 Func 𝑌 ) )