| Step |
Hyp |
Ref |
Expression |
| 1 |
|
catccatid.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
catccatid.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
catcid.o |
⊢ 1 = ( Id ‘ 𝐶 ) |
| 4 |
|
catcid.i |
⊢ 𝐼 = ( idfunc ‘ 𝑋 ) |
| 5 |
|
catcid.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
| 6 |
|
catcid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 7 |
1 2
|
catccatid |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ ( idfunc ‘ 𝑥 ) ) ) ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ ( idfunc ‘ 𝑥 ) ) ) ) |
| 9 |
8
|
simprd |
⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ ( idfunc ‘ 𝑥 ) ) ) |
| 10 |
3 9
|
eqtrid |
⊢ ( 𝜑 → 1 = ( 𝑥 ∈ 𝐵 ↦ ( idfunc ‘ 𝑥 ) ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) |
| 12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( idfunc ‘ 𝑥 ) = ( idfunc ‘ 𝑋 ) ) |
| 13 |
|
fvexd |
⊢ ( 𝜑 → ( idfunc ‘ 𝑋 ) ∈ V ) |
| 14 |
10 12 6 13
|
fvmptd |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( idfunc ‘ 𝑋 ) ) |
| 15 |
14 4
|
eqtr4di |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = 𝐼 ) |