Metamath Proof Explorer


Theorem catcid

Description: The identity arrow in the category of categories is the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses catccatid.c 𝐶 = ( CatCat ‘ 𝑈 )
catccatid.b 𝐵 = ( Base ‘ 𝐶 )
catcid.o 1 = ( Id ‘ 𝐶 )
catcid.i 𝐼 = ( idfunc𝑋 )
catcid.u ( 𝜑𝑈𝑉 )
catcid.x ( 𝜑𝑋𝐵 )
Assertion catcid ( 𝜑 → ( 1𝑋 ) = 𝐼 )

Proof

Step Hyp Ref Expression
1 catccatid.c 𝐶 = ( CatCat ‘ 𝑈 )
2 catccatid.b 𝐵 = ( Base ‘ 𝐶 )
3 catcid.o 1 = ( Id ‘ 𝐶 )
4 catcid.i 𝐼 = ( idfunc𝑋 )
5 catcid.u ( 𝜑𝑈𝑉 )
6 catcid.x ( 𝜑𝑋𝐵 )
7 1 2 catccatid ( 𝑈𝑉 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥𝐵 ↦ ( idfunc𝑥 ) ) ) )
8 5 7 syl ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥𝐵 ↦ ( idfunc𝑥 ) ) ) )
9 8 simprd ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥𝐵 ↦ ( idfunc𝑥 ) ) )
10 3 9 eqtrid ( 𝜑1 = ( 𝑥𝐵 ↦ ( idfunc𝑥 ) ) )
11 simpr ( ( 𝜑𝑥 = 𝑋 ) → 𝑥 = 𝑋 )
12 11 fveq2d ( ( 𝜑𝑥 = 𝑋 ) → ( idfunc𝑥 ) = ( idfunc𝑋 ) )
13 fvexd ( 𝜑 → ( idfunc𝑋 ) ∈ V )
14 10 12 6 13 fvmptd ( 𝜑 → ( 1𝑋 ) = ( idfunc𝑋 ) )
15 14 4 eqtr4di ( 𝜑 → ( 1𝑋 ) = 𝐼 )