Metamath Proof Explorer


Theorem catciso

Description: A functor is an isomorphism of categories if and only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in Adamek p. 34. (Contributed by Mario Carneiro, 29-Jan-2017)

Ref Expression
Hypotheses catciso.c 𝐶 = ( CatCat ‘ 𝑈 )
catciso.b 𝐵 = ( Base ‘ 𝐶 )
catciso.r 𝑅 = ( Base ‘ 𝑋 )
catciso.s 𝑆 = ( Base ‘ 𝑌 )
catciso.u ( 𝜑𝑈𝑉 )
catciso.x ( 𝜑𝑋𝐵 )
catciso.y ( 𝜑𝑌𝐵 )
catciso.i 𝐼 = ( Iso ‘ 𝐶 )
Assertion catciso ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) )

Proof

Step Hyp Ref Expression
1 catciso.c 𝐶 = ( CatCat ‘ 𝑈 )
2 catciso.b 𝐵 = ( Base ‘ 𝐶 )
3 catciso.r 𝑅 = ( Base ‘ 𝑋 )
4 catciso.s 𝑆 = ( Base ‘ 𝑌 )
5 catciso.u ( 𝜑𝑈𝑉 )
6 catciso.x ( 𝜑𝑋𝐵 )
7 catciso.y ( 𝜑𝑌𝐵 )
8 catciso.i 𝐼 = ( Iso ‘ 𝐶 )
9 relfunc Rel ( 𝑋 Func 𝑌 )
10 eqid ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 )
11 1 catccat ( 𝑈𝑉𝐶 ∈ Cat )
12 5 11 syl ( 𝜑𝐶 ∈ Cat )
13 2 10 12 6 7 8 isoval ( 𝜑 → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) )
14 13 eleq2d ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ) )
15 14 biimpa ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) )
16 12 adantr ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐶 ∈ Cat )
17 6 adantr ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑋𝐵 )
18 7 adantr ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑌𝐵 )
19 2 10 16 17 18 invfun ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) )
20 funfvbrb ( Fun ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) )
21 19 20 syl ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝐹 ∈ dom ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) )
22 15 21 mpbid ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) )
23 eqid ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 )
24 2 10 16 17 18 23 isinv ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∧ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) )
25 22 24 mpbid ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∧ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) )
26 25 simpld ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) )
27 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
28 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
29 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
30 2 27 28 29 23 16 17 18 issect ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) )
31 26 30 mpbid ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) )
32 31 simp1d ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
33 1 2 5 27 6 7 catchom ( 𝜑 → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) = ( 𝑋 Func 𝑌 ) )
34 33 adantr ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) = ( 𝑋 Func 𝑌 ) )
35 32 34 eleqtrd ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐹 ∈ ( 𝑋 Func 𝑌 ) )
36 1st2nd ( ( Rel ( 𝑋 Func 𝑌 ) ∧ 𝐹 ∈ ( 𝑋 Func 𝑌 ) ) → 𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
37 9 35 36 sylancr ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
38 1st2ndbr ( ( Rel ( 𝑋 Func 𝑌 ) ∧ 𝐹 ∈ ( 𝑋 Func 𝑌 ) ) → ( 1st𝐹 ) ( 𝑋 Func 𝑌 ) ( 2nd𝐹 ) )
39 9 35 38 sylancr ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 1st𝐹 ) ( 𝑋 Func 𝑌 ) ( 2nd𝐹 ) )
40 eqid ( Hom ‘ 𝑋 ) = ( Hom ‘ 𝑋 )
41 eqid ( Hom ‘ 𝑌 ) = ( Hom ‘ 𝑌 )
42 39 adantr ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( 1st𝐹 ) ( 𝑋 Func 𝑌 ) ( 2nd𝐹 ) )
43 simprl ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → 𝑥𝑅 )
44 simprr ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → 𝑦𝑅 )
45 3 40 41 42 43 44 funcf2 ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) ⟶ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
46 relfunc Rel ( 𝑌 Func 𝑋 )
47 31 simp2d ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) )
48 1 2 5 27 7 6 catchom ( 𝜑 → ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) = ( 𝑌 Func 𝑋 ) )
49 48 adantr ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) = ( 𝑌 Func 𝑋 ) )
50 47 49 eleqtrd ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 Func 𝑋 ) )
51 1st2ndbr ( ( Rel ( 𝑌 Func 𝑋 ) ∧ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 Func 𝑋 ) ) → ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( 𝑌 Func 𝑋 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) )
52 46 50 51 sylancr ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( 𝑌 Func 𝑋 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) )
53 52 adantr ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( 𝑌 Func 𝑋 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) )
54 3 4 42 funcf1 ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( 1st𝐹 ) : 𝑅𝑆 )
55 54 43 ffvelrnd ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 1st𝐹 ) ‘ 𝑥 ) ∈ 𝑆 )
56 54 44 ffvelrnd ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 1st𝐹 ) ‘ 𝑦 ) ∈ 𝑆 )
57 4 41 40 53 55 56 funcf2 ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) : ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ⟶ ( ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( Hom ‘ 𝑋 ) ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
58 31 simp3d ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )
59 5 adantr ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑈𝑉 )
60 1 2 59 28 17 18 17 35 50 catcco ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( ⟨ 𝑋 , 𝑌 ⟩ ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∘func 𝐹 ) )
61 eqid ( idfunc𝑋 ) = ( idfunc𝑋 )
62 1 2 29 61 5 6 catcid ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = ( idfunc𝑋 ) )
63 62 adantr ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = ( idfunc𝑋 ) )
64 58 60 63 3eqtr3d ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∘func 𝐹 ) = ( idfunc𝑋 ) )
65 64 adantr ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∘func 𝐹 ) = ( idfunc𝑋 ) )
66 65 fveq2d ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( 1st ‘ ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∘func 𝐹 ) ) = ( 1st ‘ ( idfunc𝑋 ) ) )
67 66 fveq1d ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 1st ‘ ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∘func 𝐹 ) ) ‘ 𝑥 ) = ( ( 1st ‘ ( idfunc𝑋 ) ) ‘ 𝑥 ) )
68 35 adantr ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → 𝐹 ∈ ( 𝑋 Func 𝑌 ) )
69 50 adantr ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 Func 𝑋 ) )
70 3 68 69 43 cofu1 ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 1st ‘ ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∘func 𝐹 ) ) ‘ 𝑥 ) = ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) )
71 1 2 5 catcbas ( 𝜑𝐵 = ( 𝑈 ∩ Cat ) )
72 inss2 ( 𝑈 ∩ Cat ) ⊆ Cat
73 71 72 eqsstrdi ( 𝜑𝐵 ⊆ Cat )
74 73 6 sseldd ( 𝜑𝑋 ∈ Cat )
75 74 ad2antrr ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → 𝑋 ∈ Cat )
76 61 3 75 43 idfu1 ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 1st ‘ ( idfunc𝑋 ) ) ‘ 𝑥 ) = 𝑥 )
77 67 70 76 3eqtr3d ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) = 𝑥 )
78 66 fveq1d ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 1st ‘ ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∘func 𝐹 ) ) ‘ 𝑦 ) = ( ( 1st ‘ ( idfunc𝑋 ) ) ‘ 𝑦 ) )
79 3 68 69 44 cofu1 ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 1st ‘ ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∘func 𝐹 ) ) ‘ 𝑦 ) = ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
80 61 3 75 44 idfu1 ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 1st ‘ ( idfunc𝑋 ) ) ‘ 𝑦 ) = 𝑦 )
81 78 79 80 3eqtr3d ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) = 𝑦 )
82 77 81 oveq12d ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( Hom ‘ 𝑋 ) ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) = ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) )
83 82 feq3d ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) : ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ⟶ ( ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( Hom ‘ 𝑋 ) ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) ↔ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) : ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ⟶ ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) ) )
84 57 83 mpbid ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) : ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ⟶ ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) )
85 65 fveq2d ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( 2nd ‘ ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∘func 𝐹 ) ) = ( 2nd ‘ ( idfunc𝑋 ) ) )
86 85 oveqd ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( 𝑥 ( 2nd ‘ ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∘func 𝐹 ) ) 𝑦 ) = ( 𝑥 ( 2nd ‘ ( idfunc𝑋 ) ) 𝑦 ) )
87 3 68 69 43 44 cofu2nd ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( 𝑥 ( 2nd ‘ ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∘func 𝐹 ) ) 𝑦 ) = ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ) )
88 61 3 75 40 43 44 idfu2nd ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( 𝑥 ( 2nd ‘ ( idfunc𝑋 ) ) 𝑦 ) = ( I ↾ ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) ) )
89 86 87 88 3eqtr3d ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ∘ ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ) = ( I ↾ ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) ) )
90 25 simprd ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 )
91 2 27 28 29 23 16 18 17 issect ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐹 ( ⟨ 𝑌 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) )
92 90 91 mpbid ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐹 ( ⟨ 𝑌 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) )
93 92 simp3d ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝐹 ( ⟨ 𝑌 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) )
94 1 2 59 28 18 17 18 50 35 catcco ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝐹 ( ⟨ 𝑌 , 𝑋 ⟩ ( comp ‘ 𝐶 ) 𝑌 ) ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( 𝐹func ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) )
95 eqid ( idfunc𝑌 ) = ( idfunc𝑌 )
96 1 2 29 95 5 7 catcid ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) = ( idfunc𝑌 ) )
97 96 adantr ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) = ( idfunc𝑌 ) )
98 93 94 97 3eqtr3d ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝐹func ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( idfunc𝑌 ) )
99 98 adantr ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( 𝐹func ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) = ( idfunc𝑌 ) )
100 99 fveq2d ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( 2nd ‘ ( 𝐹func ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) = ( 2nd ‘ ( idfunc𝑌 ) ) )
101 100 oveqd ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( 𝐹func ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) = ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( idfunc𝑌 ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
102 4 69 68 55 56 cofu2nd ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( 𝐹func ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) = ( ( ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 2nd𝐹 ) ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) ∘ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
103 77 81 oveq12d ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 2nd𝐹 ) ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) = ( 𝑥 ( 2nd𝐹 ) 𝑦 ) )
104 103 coeq1d ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑥 ) ) ( 2nd𝐹 ) ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ‘ ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) ∘ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) = ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ∘ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
105 102 104 eqtrd ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( 𝐹func ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) = ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ∘ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
106 73 ad2antrr ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → 𝐵 ⊆ Cat )
107 7 ad2antrr ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → 𝑌𝐵 )
108 106 107 sseldd ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → 𝑌 ∈ Cat )
109 95 4 108 41 55 56 idfu2nd ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( idfunc𝑌 ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) = ( I ↾ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
110 101 105 109 3eqtr3d ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( ( 𝑥 ( 2nd𝐹 ) 𝑦 ) ∘ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) = ( I ↾ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
111 45 84 89 110 fcof1od ( ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) ∧ ( 𝑥𝑅𝑦𝑅 ) ) → ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) –1-1-onto→ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
112 111 ralrimivva ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ∀ 𝑥𝑅𝑦𝑅 ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) –1-1-onto→ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
113 3 40 41 isffth2 ( ( 1st𝐹 ) ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ( 2nd𝐹 ) ↔ ( ( 1st𝐹 ) ( 𝑋 Func 𝑌 ) ( 2nd𝐹 ) ∧ ∀ 𝑥𝑅𝑦𝑅 ( 𝑥 ( 2nd𝐹 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝑋 ) 𝑦 ) –1-1-onto→ ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( Hom ‘ 𝑌 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) )
114 39 112 113 sylanbrc ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 1st𝐹 ) ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ( 2nd𝐹 ) )
115 df-br ( ( 1st𝐹 ) ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ( 2nd𝐹 ) ↔ ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) )
116 114 115 sylib ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) )
117 37 116 eqeltrd ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) )
118 3 4 39 funcf1 ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 1st𝐹 ) : 𝑅𝑆 )
119 4 3 52 funcf1 ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) : 𝑆𝑅 )
120 64 fveq2d ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 1st ‘ ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∘func 𝐹 ) ) = ( 1st ‘ ( idfunc𝑋 ) ) )
121 3 35 50 cofu1st ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 1st ‘ ( ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ∘func 𝐹 ) ) = ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ∘ ( 1st𝐹 ) ) )
122 74 adantr ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑋 ∈ Cat )
123 61 3 122 idfu1st ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 1st ‘ ( idfunc𝑋 ) ) = ( I ↾ 𝑅 ) )
124 120 121 123 3eqtr3d ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ∘ ( 1st𝐹 ) ) = ( I ↾ 𝑅 ) )
125 98 fveq2d ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 1st ‘ ( 𝐹func ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) = ( 1st ‘ ( idfunc𝑌 ) ) )
126 4 50 35 cofu1st ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 1st ‘ ( 𝐹func ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) = ( ( 1st𝐹 ) ∘ ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) )
127 73 7 sseldd ( 𝜑𝑌 ∈ Cat )
128 127 adantr ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → 𝑌 ∈ Cat )
129 95 4 128 idfu1st ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 1st ‘ ( idfunc𝑌 ) ) = ( I ↾ 𝑆 ) )
130 125 126 129 3eqtr3d ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( ( 1st𝐹 ) ∘ ( 1st ‘ ( ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ‘ 𝐹 ) ) ) = ( I ↾ 𝑆 ) )
131 118 119 124 130 fcof1od ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 1st𝐹 ) : 𝑅1-1-onto𝑆 )
132 117 131 jca ( ( 𝜑𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) → ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) )
133 12 adantr ( ( 𝜑 ∧ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) → 𝐶 ∈ Cat )
134 6 adantr ( ( 𝜑 ∧ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) → 𝑋𝐵 )
135 7 adantr ( ( 𝜑 ∧ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) → 𝑌𝐵 )
136 inss1 ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ⊆ ( 𝑋 Full 𝑌 )
137 fullfunc ( 𝑋 Full 𝑌 ) ⊆ ( 𝑋 Func 𝑌 )
138 136 137 sstri ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ⊆ ( 𝑋 Func 𝑌 )
139 simprl ( ( 𝜑 ∧ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) → 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) )
140 138 139 sselid ( ( 𝜑 ∧ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) → 𝐹 ∈ ( 𝑋 Func 𝑌 ) )
141 9 140 36 sylancr ( ( 𝜑 ∧ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) → 𝐹 = ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ )
142 5 adantr ( ( 𝜑 ∧ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) → 𝑈𝑉 )
143 eqid ( 𝑥𝑆 , 𝑦𝑆 ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) = ( 𝑥𝑆 , 𝑦𝑆 ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) )
144 141 139 eqeltrrd ( ( 𝜑 ∧ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) → ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) )
145 144 115 sylibr ( ( 𝜑 ∧ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) → ( 1st𝐹 ) ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ( 2nd𝐹 ) )
146 simprr ( ( 𝜑 ∧ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) → ( 1st𝐹 ) : 𝑅1-1-onto𝑆 )
147 1 2 3 4 142 134 135 10 143 145 146 catcisolem ( ( 𝜑 ∧ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) → ⟨ ( 1st𝐹 ) , ( 2nd𝐹 ) ⟩ ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ⟨ ( 1st𝐹 ) , ( 𝑥𝑆 , 𝑦𝑆 ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) ⟩ )
148 141 147 eqbrtrd ( ( 𝜑 ∧ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) → 𝐹 ( 𝑋 ( Inv ‘ 𝐶 ) 𝑌 ) ⟨ ( 1st𝐹 ) , ( 𝑥𝑆 , 𝑦𝑆 ( ( ( 1st𝐹 ) ‘ 𝑥 ) ( 2nd𝐹 ) ( ( 1st𝐹 ) ‘ 𝑦 ) ) ) ⟩ )
149 2 10 133 134 135 8 148 inviso1 ( ( 𝜑 ∧ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) )
150 132 149 impbida ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ( 𝐹 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st𝐹 ) : 𝑅1-1-onto𝑆 ) ) )