Step |
Hyp |
Ref |
Expression |
1 |
|
catcocl.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
catcocl.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
catcocl.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
catcocl.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
|
catcocl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
catcocl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
7 |
|
catcocl.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
8 |
|
catcocl.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
9 |
|
catcocl.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) |
10 |
1 2 3
|
iscat |
⊢ ( 𝐶 ∈ Cat → ( 𝐶 ∈ Cat ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑣 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑣 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
11 |
10
|
ibi |
⊢ ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑣 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑣 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
12 |
|
simpl |
⊢ ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑣 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑣 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
13 |
12
|
2ralimi |
⊢ ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑣 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑣 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
14 |
13
|
2ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑣 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑣 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
15 |
14
|
adantl |
⊢ ( ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑣 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑣 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
16 |
15
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑣 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑣 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑣 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
17 |
4 11 16
|
3syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ) |
18 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑌 ∈ 𝐵 ) |
19 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑍 ∈ 𝐵 ) |
20 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
21 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑥 = 𝑋 ) |
22 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑦 = 𝑌 ) |
23 |
21 22
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
24 |
20 23
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) ) |
25 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) |
26 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑧 = 𝑍 ) |
27 |
22 26
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑌 𝐻 𝑍 ) ) |
28 |
25 27
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝐺 ∈ ( 𝑦 𝐻 𝑧 ) ) |
29 |
28
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → 𝐺 ∈ ( 𝑦 𝐻 𝑧 ) ) |
30 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝑥 = 𝑋 ) |
31 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝑦 = 𝑌 ) |
32 |
30 31
|
opeq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑋 , 𝑌 〉 ) |
33 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝑧 = 𝑍 ) |
34 |
32 33
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) ) |
35 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) |
36 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝑓 = 𝐹 ) |
37 |
34 35 36
|
oveq123d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
38 |
30 33
|
oveq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( 𝑥 𝐻 𝑧 ) = ( 𝑋 𝐻 𝑍 ) ) |
39 |
37 38
|
eleq12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
40 |
29 39
|
rspcdv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
41 |
24 40
|
rspcimdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
42 |
19 41
|
rspcimdv |
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
43 |
18 42
|
rspcimdv |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
44 |
5 43
|
rspcimdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) ) |
45 |
17 44
|
mpd |
⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 𝐻 𝑍 ) ) |