| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							catcoppccl.c | 
							⊢ 𝐶  =  ( CatCat ‘ 𝑈 )  | 
						
						
							| 2 | 
							
								
							 | 
							catcoppccl.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 3 | 
							
								
							 | 
							catcoppccl.o | 
							⊢ 𝑂  =  ( oppCat ‘ 𝑋 )  | 
						
						
							| 4 | 
							
								
							 | 
							catcoppccl.1 | 
							⊢ ( 𝜑  →  𝑈  ∈  WUni )  | 
						
						
							| 5 | 
							
								
							 | 
							catcoppccl.2 | 
							⊢ ( 𝜑  →  ω  ∈  𝑈 )  | 
						
						
							| 6 | 
							
								
							 | 
							catcoppccl.3 | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑋 )  =  ( Base ‘ 𝑋 )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ( Hom  ‘ 𝑋 )  =  ( Hom  ‘ 𝑋 )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ( comp ‘ 𝑋 )  =  ( comp ‘ 𝑋 )  | 
						
						
							| 10 | 
							
								7 8 9 3
							 | 
							oppcval | 
							⊢ ( 𝑋  ∈  𝐵  →  𝑂  =  ( ( 𝑋  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  ( Hom  ‘ 𝑋 ) 〉 )  sSet  〈 ( comp ‘ ndx ) ,  ( 𝑥  ∈  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ,  𝑦  ∈  ( Base ‘ 𝑋 )  ↦  tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) ) ) 〉 ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑂  =  ( ( 𝑋  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  ( Hom  ‘ 𝑋 ) 〉 )  sSet  〈 ( comp ‘ ndx ) ,  ( 𝑥  ∈  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ,  𝑦  ∈  ( Base ‘ 𝑋 )  ↦  tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) ) ) 〉 ) )  | 
						
						
							| 12 | 
							
								1 2 4 6
							 | 
							catcbascl | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑈 )  | 
						
						
							| 13 | 
							
								
							 | 
							homid | 
							⊢ Hom   =  Slot  ( Hom  ‘ ndx )  | 
						
						
							| 14 | 
							
								4 5
							 | 
							wunndx | 
							⊢ ( 𝜑  →  ndx  ∈  𝑈 )  | 
						
						
							| 15 | 
							
								13 4 14
							 | 
							wunstr | 
							⊢ ( 𝜑  →  ( Hom  ‘ ndx )  ∈  𝑈 )  | 
						
						
							| 16 | 
							
								1 2 4 6
							 | 
							catchomcl | 
							⊢ ( 𝜑  →  ( Hom  ‘ 𝑋 )  ∈  𝑈 )  | 
						
						
							| 17 | 
							
								4 16
							 | 
							wuntpos | 
							⊢ ( 𝜑  →  tpos  ( Hom  ‘ 𝑋 )  ∈  𝑈 )  | 
						
						
							| 18 | 
							
								4 15 17
							 | 
							wunop | 
							⊢ ( 𝜑  →  〈 ( Hom  ‘ ndx ) ,  tpos  ( Hom  ‘ 𝑋 ) 〉  ∈  𝑈 )  | 
						
						
							| 19 | 
							
								4 12 18
							 | 
							wunsets | 
							⊢ ( 𝜑  →  ( 𝑋  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  ( Hom  ‘ 𝑋 ) 〉 )  ∈  𝑈 )  | 
						
						
							| 20 | 
							
								
							 | 
							ccoid | 
							⊢ comp  =  Slot  ( comp ‘ ndx )  | 
						
						
							| 21 | 
							
								20 4 14
							 | 
							wunstr | 
							⊢ ( 𝜑  →  ( comp ‘ ndx )  ∈  𝑈 )  | 
						
						
							| 22 | 
							
								1 2 4 6
							 | 
							catcbaselcl | 
							⊢ ( 𝜑  →  ( Base ‘ 𝑋 )  ∈  𝑈 )  | 
						
						
							| 23 | 
							
								4 22 22
							 | 
							wunxp | 
							⊢ ( 𝜑  →  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) )  ∈  𝑈 )  | 
						
						
							| 24 | 
							
								4 23 22
							 | 
							wunxp | 
							⊢ ( 𝜑  →  ( ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) )  ×  ( Base ‘ 𝑋 ) )  ∈  𝑈 )  | 
						
						
							| 25 | 
							
								1 2 4 6
							 | 
							catcccocl | 
							⊢ ( 𝜑  →  ( comp ‘ 𝑋 )  ∈  𝑈 )  | 
						
						
							| 26 | 
							
								4 25
							 | 
							wunrn | 
							⊢ ( 𝜑  →  ran  ( comp ‘ 𝑋 )  ∈  𝑈 )  | 
						
						
							| 27 | 
							
								4 26
							 | 
							wununi | 
							⊢ ( 𝜑  →  ∪  ran  ( comp ‘ 𝑋 )  ∈  𝑈 )  | 
						
						
							| 28 | 
							
								4 27
							 | 
							wundm | 
							⊢ ( 𝜑  →  dom  ∪  ran  ( comp ‘ 𝑋 )  ∈  𝑈 )  | 
						
						
							| 29 | 
							
								4 28
							 | 
							wuncnv | 
							⊢ ( 𝜑  →  ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∈  𝑈 )  | 
						
						
							| 30 | 
							
								4
							 | 
							wun0 | 
							⊢ ( 𝜑  →  ∅  ∈  𝑈 )  | 
						
						
							| 31 | 
							
								4 30
							 | 
							wunsn | 
							⊢ ( 𝜑  →  { ∅ }  ∈  𝑈 )  | 
						
						
							| 32 | 
							
								4 29 31
							 | 
							wunun | 
							⊢ ( 𝜑  →  ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ∈  𝑈 )  | 
						
						
							| 33 | 
							
								4 27
							 | 
							wunrn | 
							⊢ ( 𝜑  →  ran  ∪  ran  ( comp ‘ 𝑋 )  ∈  𝑈 )  | 
						
						
							| 34 | 
							
								4 32 33
							 | 
							wunxp | 
							⊢ ( 𝜑  →  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) )  ∈  𝑈 )  | 
						
						
							| 35 | 
							
								4 34
							 | 
							wunpw | 
							⊢ ( 𝜑  →  𝒫  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) )  ∈  𝑈 )  | 
						
						
							| 36 | 
							
								
							 | 
							tposssxp | 
							⊢ tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ⊆  ( ( ◡ dom  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ∪  { ∅ } )  ×  ran  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							ovssunirn | 
							⊢ ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ⊆  ∪  ran  ( comp ‘ 𝑋 )  | 
						
						
							| 38 | 
							
								
							 | 
							dmss | 
							⊢ ( ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ⊆  ∪  ran  ( comp ‘ 𝑋 )  →  dom  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ⊆  dom  ∪  ran  ( comp ‘ 𝑋 ) )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							ax-mp | 
							⊢ dom  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ⊆  dom  ∪  ran  ( comp ‘ 𝑋 )  | 
						
						
							| 40 | 
							
								
							 | 
							cnvss | 
							⊢ ( dom  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ⊆  dom  ∪  ran  ( comp ‘ 𝑋 )  →  ◡ dom  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ⊆  ◡ dom  ∪  ran  ( comp ‘ 𝑋 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							unss1 | 
							⊢ ( ◡ dom  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ⊆  ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  →  ( ◡ dom  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ∪  { ∅ } )  ⊆  ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } ) )  | 
						
						
							| 42 | 
							
								39 40 41
							 | 
							mp2b | 
							⊢ ( ◡ dom  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ∪  { ∅ } )  ⊆  ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  | 
						
						
							| 43 | 
							
								37
							 | 
							rnssi | 
							⊢ ran  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ⊆  ran  ∪  ran  ( comp ‘ 𝑋 )  | 
						
						
							| 44 | 
							
								
							 | 
							xpss12 | 
							⊢ ( ( ( ◡ dom  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ∪  { ∅ } )  ⊆  ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ∧  ran  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ⊆  ran  ∪  ran  ( comp ‘ 𝑋 ) )  →  ( ( ◡ dom  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ∪  { ∅ } )  ×  ran  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) ) )  ⊆  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) ) )  | 
						
						
							| 45 | 
							
								42 43 44
							 | 
							mp2an | 
							⊢ ( ( ◡ dom  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ∪  { ∅ } )  ×  ran  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) ) )  ⊆  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) )  | 
						
						
							| 46 | 
							
								36 45
							 | 
							sstri | 
							⊢ tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ⊆  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) )  | 
						
						
							| 47 | 
							
								
							 | 
							elpw2g | 
							⊢ ( ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) )  ∈  𝑈  →  ( tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ∈  𝒫  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) )  ↔  tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ⊆  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) ) ) )  | 
						
						
							| 48 | 
							
								34 47
							 | 
							syl | 
							⊢ ( 𝜑  →  ( tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ∈  𝒫  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) )  ↔  tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ⊆  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) ) ) )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							mpbiri | 
							⊢ ( 𝜑  →  tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ∈  𝒫  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							ralrimivw | 
							⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( Base ‘ 𝑋 ) tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ∈  𝒫  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							ralrimivw | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ∀ 𝑦  ∈  ( Base ‘ 𝑋 ) tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ∈  𝒫  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑥  ∈  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ,  𝑦  ∈  ( Base ‘ 𝑋 )  ↦  tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ,  𝑦  ∈  ( Base ‘ 𝑋 )  ↦  tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							fmpo | 
							⊢ ( ∀ 𝑥  ∈  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ∀ 𝑦  ∈  ( Base ‘ 𝑋 ) tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) )  ∈  𝒫  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) )  ↔  ( 𝑥  ∈  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ,  𝑦  ∈  ( Base ‘ 𝑋 )  ↦  tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) ) ) : ( ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) )  ×  ( Base ‘ 𝑋 ) ) ⟶ 𝒫  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) ) )  | 
						
						
							| 54 | 
							
								51 53
							 | 
							sylib | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ,  𝑦  ∈  ( Base ‘ 𝑋 )  ↦  tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) ) ) : ( ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) )  ×  ( Base ‘ 𝑋 ) ) ⟶ 𝒫  ( ( ◡ dom  ∪  ran  ( comp ‘ 𝑋 )  ∪  { ∅ } )  ×  ran  ∪  ran  ( comp ‘ 𝑋 ) ) )  | 
						
						
							| 55 | 
							
								4 24 35 54
							 | 
							wunf | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ,  𝑦  ∈  ( Base ‘ 𝑋 )  ↦  tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) ) )  ∈  𝑈 )  | 
						
						
							| 56 | 
							
								4 21 55
							 | 
							wunop | 
							⊢ ( 𝜑  →  〈 ( comp ‘ ndx ) ,  ( 𝑥  ∈  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ,  𝑦  ∈  ( Base ‘ 𝑋 )  ↦  tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) ) ) 〉  ∈  𝑈 )  | 
						
						
							| 57 | 
							
								4 19 56
							 | 
							wunsets | 
							⊢ ( 𝜑  →  ( ( 𝑋  sSet  〈 ( Hom  ‘ ndx ) ,  tpos  ( Hom  ‘ 𝑋 ) 〉 )  sSet  〈 ( comp ‘ ndx ) ,  ( 𝑥  ∈  ( ( Base ‘ 𝑋 )  ×  ( Base ‘ 𝑋 ) ) ,  𝑦  ∈  ( Base ‘ 𝑋 )  ↦  tpos  ( 〈 𝑦 ,  ( 2nd  ‘ 𝑥 ) 〉 ( comp ‘ 𝑋 ) ( 1st  ‘ 𝑥 ) ) ) 〉 )  ∈  𝑈 )  | 
						
						
							| 58 | 
							
								11 57
							 | 
							eqeltrd | 
							⊢ ( 𝜑  →  𝑂  ∈  𝑈 )  | 
						
						
							| 59 | 
							
								1 2 4
							 | 
							catcbas | 
							⊢ ( 𝜑  →  𝐵  =  ( 𝑈  ∩  Cat ) )  | 
						
						
							| 60 | 
							
								6 59
							 | 
							eleqtrd | 
							⊢ ( 𝜑  →  𝑋  ∈  ( 𝑈  ∩  Cat ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							elin2d | 
							⊢ ( 𝜑  →  𝑋  ∈  Cat )  | 
						
						
							| 62 | 
							
								3
							 | 
							oppccat | 
							⊢ ( 𝑋  ∈  Cat  →  𝑂  ∈  Cat )  | 
						
						
							| 63 | 
							
								61 62
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑂  ∈  Cat )  | 
						
						
							| 64 | 
							
								58 63
							 | 
							elind | 
							⊢ ( 𝜑  →  𝑂  ∈  ( 𝑈  ∩  Cat ) )  | 
						
						
							| 65 | 
							
								64 59
							 | 
							eleqtrrd | 
							⊢ ( 𝜑  →  𝑂  ∈  𝐵 )  |