Metamath Proof Explorer


Theorem catcslotelcl

Description: A slot entry of an element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl . (Contributed by AV, 14-Oct-2024)

Ref Expression
Hypotheses catcbascl.c 𝐶 = ( CatCat ‘ 𝑈 )
catcbascl.b 𝐵 = ( Base ‘ 𝐶 )
catcbascl.u ( 𝜑𝑈 ∈ WUni )
catcbascl.x ( 𝜑𝑋𝐵 )
catcslotelcl.e 𝐸 = Slot ( 𝐸 ‘ ndx )
Assertion catcslotelcl ( 𝜑 → ( 𝐸𝑋 ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 catcbascl.c 𝐶 = ( CatCat ‘ 𝑈 )
2 catcbascl.b 𝐵 = ( Base ‘ 𝐶 )
3 catcbascl.u ( 𝜑𝑈 ∈ WUni )
4 catcbascl.x ( 𝜑𝑋𝐵 )
5 catcslotelcl.e 𝐸 = Slot ( 𝐸 ‘ ndx )
6 1 2 3 4 catcbascl ( 𝜑𝑋𝑈 )
7 5 3 6 wunstr ( 𝜑 → ( 𝐸𝑋 ) ∈ 𝑈 )