Step |
Hyp |
Ref |
Expression |
1 |
|
catcval.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
2 |
|
catcval.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
3 |
|
catcval.b |
⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Cat ) ) |
4 |
|
catcval.h |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) ) |
5 |
|
catcval.o |
⊢ ( 𝜑 → · = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) ) |
6 |
|
df-catc |
⊢ CatCat = ( 𝑢 ∈ V ↦ ⦋ ( 𝑢 ∩ Cat ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } ) |
7 |
|
vex |
⊢ 𝑢 ∈ V |
8 |
7
|
inex1 |
⊢ ( 𝑢 ∩ Cat ) ∈ V |
9 |
8
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑢 ∩ Cat ) ∈ V ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → 𝑢 = 𝑈 ) |
11 |
10
|
ineq1d |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑢 ∩ Cat ) = ( 𝑈 ∩ Cat ) ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → 𝐵 = ( 𝑈 ∩ Cat ) ) |
13 |
11 12
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ( 𝑢 ∩ Cat ) = 𝐵 ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → 𝑏 = 𝐵 ) |
15 |
14
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → 〈 ( Base ‘ ndx ) , 𝑏 〉 = 〈 ( Base ‘ ndx ) , 𝐵 〉 ) |
16 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 Func 𝑦 ) = ( 𝑥 Func 𝑦 ) ) |
17 |
14 14 16
|
mpoeq123dv |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) ) |
18 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → 𝐻 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 Func 𝑦 ) ) ) |
19 |
17 18
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) = 𝐻 ) |
20 |
19
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 = 〈 ( Hom ‘ ndx ) , 𝐻 〉 ) |
21 |
14
|
sqxpeqd |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑏 × 𝑏 ) = ( 𝐵 × 𝐵 ) ) |
22 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) = ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) |
23 |
21 14 22
|
mpoeq123dv |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) ) |
24 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → · = ( 𝑣 ∈ ( 𝐵 × 𝐵 ) , 𝑧 ∈ 𝐵 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) ) |
25 |
23 24
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) = · ) |
26 |
25
|
opeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 = 〈 ( comp ‘ ndx ) , · 〉 ) |
27 |
15 20 26
|
tpeq123d |
⊢ ( ( ( 𝜑 ∧ 𝑢 = 𝑈 ) ∧ 𝑏 = 𝐵 ) → { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
28 |
9 13 27
|
csbied2 |
⊢ ( ( 𝜑 ∧ 𝑢 = 𝑈 ) → ⦋ ( 𝑢 ∩ Cat ) / 𝑏 ⦌ { 〈 ( Base ‘ ndx ) , 𝑏 〉 , 〈 ( Hom ‘ ndx ) , ( 𝑥 ∈ 𝑏 , 𝑦 ∈ 𝑏 ↦ ( 𝑥 Func 𝑦 ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑣 ∈ ( 𝑏 × 𝑏 ) , 𝑧 ∈ 𝑏 ↦ ( 𝑔 ∈ ( ( 2nd ‘ 𝑣 ) Func 𝑧 ) , 𝑓 ∈ ( Func ‘ 𝑣 ) ↦ ( 𝑔 ∘func 𝑓 ) ) ) 〉 } = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
29 |
2
|
elexd |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
30 |
|
tpex |
⊢ { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ∈ V |
31 |
30
|
a1i |
⊢ ( 𝜑 → { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ∈ V ) |
32 |
6 28 29 31
|
fvmptd2 |
⊢ ( 𝜑 → ( CatCat ‘ 𝑈 ) = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |
33 |
1 32
|
eqtrid |
⊢ ( 𝜑 → 𝐶 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 , 〈 ( Hom ‘ ndx ) , 𝐻 〉 , 〈 ( comp ‘ ndx ) , · 〉 } ) |