| Step | Hyp | Ref | Expression | 
						
							| 1 |  | catidd.b | ⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝐶 ) ) | 
						
							| 2 |  | catidd.h | ⊢ ( 𝜑  →  𝐻  =  ( Hom  ‘ 𝐶 ) ) | 
						
							| 3 |  | catidd.o | ⊢ ( 𝜑  →   ·   =  ( comp ‘ 𝐶 ) ) | 
						
							| 4 |  | catidd.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 5 |  | catidd.1 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →   1   ∈  ( 𝑥 𝐻 𝑥 ) ) | 
						
							| 6 |  | catidd.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑓  ∈  ( 𝑦 𝐻 𝑥 ) ) )  →  (  1  ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓 ) | 
						
							| 7 |  | catidd.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) ) )  →  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 )  1  )  =  𝑓 ) | 
						
							| 8 | 6 | ex | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑓  ∈  ( 𝑦 𝐻 𝑥 ) )  →  (  1  ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓 ) ) | 
						
							| 9 | 1 | eleq2d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↔  𝑥  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 10 | 1 | eleq2d | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  ↔  𝑦  ∈  ( Base ‘ 𝐶 ) ) ) | 
						
							| 11 | 2 | oveqd | ⊢ ( 𝜑  →  ( 𝑦 𝐻 𝑥 )  =  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 12 | 11 | eleq2d | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝑦 𝐻 𝑥 )  ↔  𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ) ) | 
						
							| 13 | 9 10 12 | 3anbi123d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑓  ∈  ( 𝑦 𝐻 𝑥 ) )  ↔  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ) ) ) | 
						
							| 14 | 3 | oveqd | ⊢ ( 𝜑  →  ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 )  =  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 15 | 14 | oveqd | ⊢ ( 𝜑  →  (  1  ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) ) | 
						
							| 16 | 15 | eqeq1d | ⊢ ( 𝜑  →  ( (  1  ( 〈 𝑦 ,  𝑥 〉  ·  𝑥 ) 𝑓 )  =  𝑓  ↔  (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓 ) ) | 
						
							| 17 | 8 13 16 | 3imtr3d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) )  →  (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓 ) ) | 
						
							| 18 | 17 | 3expd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐶 )  →  ( 𝑦  ∈  ( Base ‘ 𝐶 )  →  ( 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 )  →  (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓 ) ) ) ) | 
						
							| 19 | 18 | imp41 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) )  →  (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓 ) | 
						
							| 20 | 19 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) )  →  ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓 ) | 
						
							| 21 | 7 | ex | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) )  →  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 )  1  )  =  𝑓 ) ) | 
						
							| 22 | 2 | oveqd | ⊢ ( 𝜑  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ) | 
						
							| 23 | 22 | eleq2d | ⊢ ( 𝜑  →  ( 𝑓  ∈  ( 𝑥 𝐻 𝑦 )  ↔  𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ) ) | 
						
							| 24 | 9 10 23 | 3anbi123d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑓  ∈  ( 𝑥 𝐻 𝑦 ) )  ↔  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ) ) ) | 
						
							| 25 | 3 | oveqd | ⊢ ( 𝜑  →  ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 )  =  ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ) | 
						
							| 26 | 25 | oveqd | ⊢ ( 𝜑  →  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 )  1  )  =  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  ) ) | 
						
							| 27 | 26 | eqeq1d | ⊢ ( 𝜑  →  ( ( 𝑓 ( 〈 𝑥 ,  𝑥 〉  ·  𝑦 )  1  )  =  𝑓  ↔  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  )  =  𝑓 ) ) | 
						
							| 28 | 21 24 27 | 3imtr3d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( Base ‘ 𝐶 )  ∧  𝑦  ∈  ( Base ‘ 𝐶 )  ∧  𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) )  →  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  )  =  𝑓 ) ) | 
						
							| 29 | 28 | 3expd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐶 )  →  ( 𝑦  ∈  ( Base ‘ 𝐶 )  →  ( 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 )  →  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  )  =  𝑓 ) ) ) ) | 
						
							| 30 | 29 | imp41 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) )  →  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  )  =  𝑓 ) | 
						
							| 31 | 30 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) )  →  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  )  =  𝑓 ) | 
						
							| 32 | 20 31 | jca | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  ∧  𝑦  ∈  ( Base ‘ 𝐶 ) )  →  ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  )  =  𝑓 ) ) | 
						
							| 33 | 32 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  )  =  𝑓 ) ) | 
						
							| 34 | 5 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  →   1   ∈  ( 𝑥 𝐻 𝑥 ) ) ) | 
						
							| 35 | 2 | oveqd | ⊢ ( 𝜑  →  ( 𝑥 𝐻 𝑥 )  =  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 36 | 35 | eleq2d | ⊢ ( 𝜑  →  (  1   ∈  ( 𝑥 𝐻 𝑥 )  ↔   1   ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ) ) | 
						
							| 37 | 34 9 36 | 3imtr3d | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐶 )  →   1   ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ) ) | 
						
							| 38 | 37 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →   1   ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ) | 
						
							| 39 |  | eqid | ⊢ ( Base ‘ 𝐶 )  =  ( Base ‘ 𝐶 ) | 
						
							| 40 |  | eqid | ⊢ ( Hom  ‘ 𝐶 )  =  ( Hom  ‘ 𝐶 ) | 
						
							| 41 |  | eqid | ⊢ ( comp ‘ 𝐶 )  =  ( comp ‘ 𝐶 ) | 
						
							| 42 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  𝐶  ∈  Cat ) | 
						
							| 43 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  𝑥  ∈  ( Base ‘ 𝐶 ) ) | 
						
							| 44 | 39 40 41 42 43 | catideu | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  ∃! 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 ) ) | 
						
							| 45 |  | oveq1 | ⊢ ( 𝑔  =   1   →  ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) ) | 
						
							| 46 | 45 | eqeq1d | ⊢ ( 𝑔  =   1   →  ( ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ↔  (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓 ) ) | 
						
							| 47 | 46 | ralbidv | ⊢ ( 𝑔  =   1   →  ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ↔  ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓 ) ) | 
						
							| 48 |  | oveq2 | ⊢ ( 𝑔  =   1   →  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  ) ) | 
						
							| 49 | 48 | eqeq1d | ⊢ ( 𝑔  =   1   →  ( ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓  ↔  ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  )  =  𝑓 ) ) | 
						
							| 50 | 49 | ralbidv | ⊢ ( 𝑔  =   1   →  ( ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓  ↔  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  )  =  𝑓 ) ) | 
						
							| 51 | 47 50 | anbi12d | ⊢ ( 𝑔  =   1   →  ( ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 )  ↔  ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  )  =  𝑓 ) ) ) | 
						
							| 52 | 51 | ralbidv | ⊢ ( 𝑔  =   1   →  ( ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  )  =  𝑓 ) ) ) | 
						
							| 53 | 52 | riota2 | ⊢ ( (  1   ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 )  ∧  ∃! 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 ) )  →  ( ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  )  =  𝑓 )  ↔  ( ℩ 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 ) )  =   1  ) ) | 
						
							| 54 | 38 44 53 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  ( ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) (  1  ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 )  1  )  =  𝑓 )  ↔  ( ℩ 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 ) )  =   1  ) ) | 
						
							| 55 | 33 54 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Base ‘ 𝐶 ) )  →  ( ℩ 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 ) )  =   1  ) | 
						
							| 56 | 55 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 ) ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦   1  ) ) | 
						
							| 57 |  | eqid | ⊢ ( Id ‘ 𝐶 )  =  ( Id ‘ 𝐶 ) | 
						
							| 58 | 39 40 41 4 57 | cidfval | ⊢ ( 𝜑  →  ( Id ‘ 𝐶 )  =  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦  ( ℩ 𝑔  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑥 ) ∀ 𝑦  ∈  ( Base ‘ 𝐶 ) ( ∀ 𝑓  ∈  ( 𝑦 ( Hom  ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑥 ( Hom  ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 ,  𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 )  =  𝑓 ) ) ) ) | 
						
							| 59 | 1 | mpteq1d | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐵  ↦   1  )  =  ( 𝑥  ∈  ( Base ‘ 𝐶 )  ↦   1  ) ) | 
						
							| 60 | 56 58 59 | 3eqtr4d | ⊢ ( 𝜑  →  ( Id ‘ 𝐶 )  =  ( 𝑥  ∈  𝐵  ↦   1  ) ) |