Step |
Hyp |
Ref |
Expression |
1 |
|
catidd.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
2 |
|
catidd.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) |
3 |
|
catidd.o |
⊢ ( 𝜑 → · = ( comp ‘ 𝐶 ) ) |
4 |
|
catidd.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
|
catidd.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 1 ∈ ( 𝑥 𝐻 𝑥 ) ) |
6 |
|
catidd.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ) ) → ( 1 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ) |
7 |
|
catidd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 1 ) = 𝑓 ) |
8 |
6
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ) → ( 1 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ) ) |
9 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ) |
10 |
1
|
eleq2d |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) |
11 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑦 𝐻 𝑥 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
12 |
11
|
eleq2d |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ↔ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) |
13 |
9 10 12
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) ) |
14 |
3
|
oveqd |
⊢ ( 𝜑 → ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) = ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) ) |
15 |
14
|
oveqd |
⊢ ( 𝜑 → ( 1 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝜑 → ( ( 1 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ↔ ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
17 |
8 13 16
|
3imtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
18 |
17
|
3expd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) → ( 𝑦 ∈ ( Base ‘ 𝐶 ) → ( 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) → ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) ) ) |
19 |
18
|
imp41 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ) → ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) |
20 |
19
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) |
21 |
7
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 1 ) = 𝑓 ) ) |
22 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 𝐻 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
23 |
22
|
eleq2d |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) |
24 |
9 10 23
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) ) |
25 |
3
|
oveqd |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) = ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) ) |
26 |
25
|
oveqd |
⊢ ( 𝜑 → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 1 ) = ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 1 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) |
28 |
21 24 27
|
3imtr3d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) |
29 |
28
|
3expd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) → ( 𝑦 ∈ ( Base ‘ 𝐶 ) → ( 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) ) ) |
30 |
29
|
imp41 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) |
31 |
30
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) |
32 |
20 31
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) |
33 |
32
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) |
34 |
5
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 → 1 ∈ ( 𝑥 𝐻 𝑥 ) ) ) |
35 |
2
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 𝐻 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
36 |
35
|
eleq2d |
⊢ ( 𝜑 → ( 1 ∈ ( 𝑥 𝐻 𝑥 ) ↔ 1 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) |
37 |
34 9 36
|
3imtr3d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) → 1 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) ) |
38 |
37
|
imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 1 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
39 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
40 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
41 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
42 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) |
43 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
44 |
39 40 41 42 43
|
catideu |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ∃! 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) |
45 |
|
oveq1 |
⊢ ( 𝑔 = 1 → ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) ) |
46 |
45
|
eqeq1d |
⊢ ( 𝑔 = 1 → ( ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ↔ ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
47 |
46
|
ralbidv |
⊢ ( 𝑔 = 1 → ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ) ) |
48 |
|
oveq2 |
⊢ ( 𝑔 = 1 → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) ) |
49 |
48
|
eqeq1d |
⊢ ( 𝑔 = 1 → ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) |
50 |
49
|
ralbidv |
⊢ ( 𝑔 = 1 → ( ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) |
51 |
47 50
|
anbi12d |
⊢ ( 𝑔 = 1 → ( ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) ) |
52 |
51
|
ralbidv |
⊢ ( 𝑔 = 1 → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ) ) |
53 |
52
|
riota2 |
⊢ ( ( 1 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∧ ∃! 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ↔ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) = 1 ) ) |
54 |
38 44 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 1 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 1 ) = 𝑓 ) ↔ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) = 1 ) ) |
55 |
33 54
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) = 1 ) |
56 |
55
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 1 ) ) |
57 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
58 |
39 40 41 4 57
|
cidfval |
⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( ℩ 𝑔 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( ∀ 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 ( comp ‘ 𝐶 ) 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |
59 |
1
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 1 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ 1 ) ) |
60 |
56 58 59
|
3eqtr4d |
⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ 𝐵 ↦ 1 ) ) |