| Step | Hyp | Ref | Expression | 
						
							| 1 |  | catidex.b | ⊢ 𝐵  =  ( Base ‘ 𝐶 ) | 
						
							| 2 |  | catidex.h | ⊢ 𝐻  =  ( Hom  ‘ 𝐶 ) | 
						
							| 3 |  | catidex.o | ⊢  ·   =  ( comp ‘ 𝐶 ) | 
						
							| 4 |  | catidex.c | ⊢ ( 𝜑  →  𝐶  ∈  Cat ) | 
						
							| 5 |  | catidex.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 6 | 1 2 3 4 5 | catidex | ⊢ ( 𝜑  →  ∃ 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦 𝐻 𝑋 )  =  ( 𝑋 𝐻 𝑋 ) ) | 
						
							| 8 |  | opeq1 | ⊢ ( 𝑦  =  𝑋  →  〈 𝑦 ,  𝑋 〉  =  〈 𝑋 ,  𝑋 〉 ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑦  =  𝑋  →  ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 )  =  ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ) | 
						
							| 10 | 9 | oveqd | ⊢ ( 𝑦  =  𝑋  →  ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 ) ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ↔  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓 ) ) | 
						
							| 12 | 7 11 | raleqbidv | ⊢ ( 𝑦  =  𝑋  →  ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ↔  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓 ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑋 𝐻 𝑦 )  =  ( 𝑋 𝐻 𝑋 ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑦  =  𝑋  →  ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 )  =  ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ) | 
						
							| 15 | 14 | oveqd | ⊢ ( 𝑦  =  𝑋  →  ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 ) ) | 
						
							| 16 | 15 | eqeq1d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓  ↔  ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 ) ) | 
						
							| 17 | 13 16 | raleqbidv | ⊢ ( 𝑦  =  𝑋  →  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓  ↔  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 ) ) | 
						
							| 18 | 12 17 | anbi12d | ⊢ ( 𝑦  =  𝑋  →  ( ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓 )  ↔  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 19 | 18 | rspcv | ⊢ ( 𝑋  ∈  𝐵  →  ( ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓 )  →  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 20 | 5 19 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓 )  →  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 21 | 20 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓 )  →  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 22 |  | an3 | ⊢ ( ( ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 )  ∧  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑓 ) )  →  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑓 ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑓  =  ℎ  →  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ ) ) | 
						
							| 24 |  | id | ⊢ ( 𝑓  =  ℎ  →  𝑓  =  ℎ ) | 
						
							| 25 | 23 24 | eqeq12d | ⊢ ( 𝑓  =  ℎ  →  ( ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ↔  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  ℎ ) ) | 
						
							| 26 | 25 | rspcv | ⊢ ( ℎ  ∈  ( 𝑋 𝐻 𝑋 )  →  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  →  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  ℎ ) ) | 
						
							| 27 |  | oveq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ ) ) | 
						
							| 28 |  | id | ⊢ ( 𝑓  =  𝑔  →  𝑓  =  𝑔 ) | 
						
							| 29 | 27 28 | eqeq12d | ⊢ ( 𝑓  =  𝑔  →  ( ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑓  ↔  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑔 ) ) | 
						
							| 30 | 29 | rspcv | ⊢ ( 𝑔  ∈  ( 𝑋 𝐻 𝑋 )  →  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑓  →  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑔 ) ) | 
						
							| 31 | 26 30 | im2anan9r | ⊢ ( ( 𝑔  ∈  ( 𝑋 𝐻 𝑋 )  ∧  ℎ  ∈  ( 𝑋 𝐻 𝑋 ) )  →  ( ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑓 )  →  ( ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  ℎ  ∧  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑔 ) ) ) | 
						
							| 32 |  | eqtr2 | ⊢ ( ( ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  ℎ  ∧  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑔 )  →  ℎ  =  𝑔 ) | 
						
							| 33 | 32 | equcomd | ⊢ ( ( ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  ℎ  ∧  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑔 )  →  𝑔  =  ℎ ) | 
						
							| 34 | 22 31 33 | syl56 | ⊢ ( ( 𝑔  ∈  ( 𝑋 𝐻 𝑋 )  ∧  ℎ  ∈  ( 𝑋 𝐻 𝑋 ) )  →  ( ( ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 )  ∧  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑓 ) )  →  𝑔  =  ℎ ) ) | 
						
							| 35 | 34 | rgen2 | ⊢ ∀ 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑋 𝐻 𝑋 ) ( ( ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 )  ∧  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑓 ) )  →  𝑔  =  ℎ ) | 
						
							| 36 | 35 | a1i | ⊢ ( 𝜑  →  ∀ 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑋 𝐻 𝑋 ) ( ( ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 )  ∧  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑓 ) )  →  𝑔  =  ℎ ) ) | 
						
							| 37 |  | oveq1 | ⊢ ( 𝑔  =  ℎ  →  ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  ( ℎ ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 ) ) | 
						
							| 38 | 37 | eqeq1d | ⊢ ( 𝑔  =  ℎ  →  ( ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ↔  ( ℎ ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓 ) ) | 
						
							| 39 | 38 | ralbidv | ⊢ ( 𝑔  =  ℎ  →  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ↔  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓 ) ) | 
						
							| 40 |  | oveq2 | ⊢ ( 𝑔  =  ℎ  →  ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ ) ) | 
						
							| 41 | 40 | eqeq1d | ⊢ ( 𝑔  =  ℎ  →  ( ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓  ↔  ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑓 ) ) | 
						
							| 42 | 41 | ralbidv | ⊢ ( 𝑔  =  ℎ  →  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓  ↔  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑓 ) ) | 
						
							| 43 | 39 42 | anbi12d | ⊢ ( 𝑔  =  ℎ  →  ( ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 )  ↔  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑓 ) ) ) | 
						
							| 44 | 43 | rmo4 | ⊢ ( ∃* 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 )  ↔  ∀ 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ∀ ℎ  ∈  ( 𝑋 𝐻 𝑋 ) ( ( ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 )  ∧  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) ℎ )  =  𝑓 ) )  →  𝑔  =  ℎ ) ) | 
						
							| 45 | 36 44 | sylibr | ⊢ ( 𝜑  →  ∃* 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 ) ) | 
						
							| 46 |  | rmoim | ⊢ ( ∀ 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓 )  →  ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 ) )  →  ( ∃* 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑋 ) 𝑔 )  =  𝑓 )  →  ∃* 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 47 | 21 45 46 | sylc | ⊢ ( 𝜑  →  ∃* 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) | 
						
							| 48 |  | reu5 | ⊢ ( ∃! 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓 )  ↔  ( ∃ 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓 )  ∧  ∃* 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) ) | 
						
							| 49 | 6 47 48 | sylanbrc | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  ( 𝑋 𝐻 𝑋 ) ∀ 𝑦  ∈  𝐵 ( ∀ 𝑓  ∈  ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 ,  𝑋 〉  ·  𝑋 ) 𝑓 )  =  𝑓  ∧  ∀ 𝑓  ∈  ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 ,  𝑋 〉  ·  𝑦 ) 𝑔 )  =  𝑓 ) ) |