Step |
Hyp |
Ref |
Expression |
1 |
|
catidex.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
2 |
|
catidex.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
3 |
|
catidex.o |
⊢ · = ( comp ‘ 𝐶 ) |
4 |
|
catidex.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
|
catidex.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
1 2 3 4 5
|
catidex |
⊢ ( 𝜑 → ∃ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
7 |
|
oveq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 𝐻 𝑋 ) = ( 𝑋 𝐻 𝑋 ) ) |
8 |
|
opeq1 |
⊢ ( 𝑦 = 𝑋 → 〈 𝑦 , 𝑋 〉 = 〈 𝑋 , 𝑋 〉 ) |
9 |
8
|
oveq1d |
⊢ ( 𝑦 = 𝑋 → ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) = ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ) |
10 |
9
|
oveqd |
⊢ ( 𝑦 = 𝑋 → ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) |
11 |
10
|
eqeq1d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ↔ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) ) |
12 |
7 11
|
raleqbidv |
⊢ ( 𝑦 = 𝑋 → ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝑋 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑋 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑦 = 𝑋 → ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) = ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ) |
15 |
14
|
oveqd |
⊢ ( 𝑦 = 𝑋 → ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) |
17 |
13 16
|
raleqbidv |
⊢ ( 𝑦 = 𝑋 → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) |
18 |
12 17
|
anbi12d |
⊢ ( 𝑦 = 𝑋 → ( ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) ) |
19 |
18
|
rspcv |
⊢ ( 𝑋 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) ) |
20 |
5 19
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) ) |
21 |
20
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) ) |
22 |
|
an3 |
⊢ ( ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ∧ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) |
23 |
|
oveq2 |
⊢ ( 𝑓 = ℎ → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) ) |
24 |
|
id |
⊢ ( 𝑓 = ℎ → 𝑓 = ℎ ) |
25 |
23 24
|
eqeq12d |
⊢ ( 𝑓 = ℎ → ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ↔ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = ℎ ) ) |
26 |
25
|
rspcv |
⊢ ( ℎ ∈ ( 𝑋 𝐻 𝑋 ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = ℎ ) ) |
27 |
|
oveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) ) |
28 |
|
id |
⊢ ( 𝑓 = 𝑔 → 𝑓 = 𝑔 ) |
29 |
27 28
|
eqeq12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ↔ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑔 ) ) |
30 |
29
|
rspcv |
⊢ ( 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑔 ) ) |
31 |
26 30
|
im2anan9r |
⊢ ( ( 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑋 ) ) → ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) → ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = ℎ ∧ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑔 ) ) ) |
32 |
|
eqtr2 |
⊢ ( ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = ℎ ∧ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑔 ) → ℎ = 𝑔 ) |
33 |
32
|
equcomd |
⊢ ( ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = ℎ ∧ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑔 ) → 𝑔 = ℎ ) |
34 |
22 31 33
|
syl56 |
⊢ ( ( 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑋 ) ) → ( ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ∧ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) → 𝑔 = ℎ ) ) |
35 |
34
|
rgen2 |
⊢ ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑋 𝐻 𝑋 ) ( ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ∧ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) → 𝑔 = ℎ ) |
36 |
35
|
a1i |
⊢ ( 𝜑 → ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑋 𝐻 𝑋 ) ( ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ∧ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) → 𝑔 = ℎ ) ) |
37 |
|
oveq1 |
⊢ ( 𝑔 = ℎ → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) |
38 |
37
|
eqeq1d |
⊢ ( 𝑔 = ℎ → ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ↔ ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) ) |
39 |
38
|
ralbidv |
⊢ ( 𝑔 = ℎ → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) ) |
40 |
|
oveq2 |
⊢ ( 𝑔 = ℎ → ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) ) |
41 |
40
|
eqeq1d |
⊢ ( 𝑔 = ℎ → ( ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) |
42 |
41
|
ralbidv |
⊢ ( 𝑔 = ℎ → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) |
43 |
39 42
|
anbi12d |
⊢ ( 𝑔 = ℎ → ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) ) |
44 |
43
|
rmo4 |
⊢ ( ∃* 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑋 𝐻 𝑋 ) ( ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ∧ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) → 𝑔 = ℎ ) ) |
45 |
36 44
|
sylibr |
⊢ ( 𝜑 → ∃* 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) |
46 |
|
rmoim |
⊢ ( ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) → ( ∃* 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) → ∃* 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
47 |
21 45 46
|
sylc |
⊢ ( 𝜑 → ∃* 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
48 |
|
reu5 |
⊢ ( ∃! 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∃ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∃* 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
49 |
6 47 48
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |