Step |
Hyp |
Ref |
Expression |
1 |
|
catprs.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ) |
2 |
|
catprs.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
3 |
|
catprs.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) |
4 |
|
catprs.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
6 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
7 |
|
eqid |
⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐶 ∈ Cat ) |
9 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐵 = ( Base ‘ 𝐶 ) ) |
11 |
9 10
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
12 |
5 6 7 8 11
|
catidcl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐻 = ( Hom ‘ 𝐶 ) ) |
14 |
13
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐻 𝑋 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
15 |
12 14
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 𝐻 𝑋 ) ) |
16 |
15
|
ne0d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 𝐻 𝑋 ) ≠ ∅ ) |
17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ) |
18 |
17 9 9
|
catprslem |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑋 ↔ ( 𝑋 𝐻 𝑋 ) ≠ ∅ ) ) |
19 |
16 18
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ≤ 𝑋 ) |
20 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → 𝐻 = ( Hom ‘ 𝐶 ) ) |
21 |
20
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 𝐻 𝑍 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
22 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ ( Base ‘ 𝐶 ) ) ) |
23 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑌 ∈ 𝐵 ↔ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
24 |
2
|
eleq2d |
⊢ ( 𝜑 → ( 𝑍 ∈ 𝐵 ↔ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) |
25 |
22 23 24
|
3anbi123d |
⊢ ( 𝜑 → ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ↔ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ) |
26 |
25
|
pm5.32i |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ↔ ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ) |
27 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
28 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → 𝐶 ∈ Cat ) |
29 |
|
simplr1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
30 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
31 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
32 |
20
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 𝐻 𝑌 ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
33 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) |
34 |
17 9 33
|
catprslem |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) |
35 |
34
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) |
36 |
35
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) |
37 |
32 36
|
eqnetrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ≠ ∅ ) |
38 |
26 37
|
sylanbr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ≠ ∅ ) |
39 |
20
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑌 𝐻 𝑍 ) = ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
40 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) |
41 |
17 33 40
|
catprslem |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ≤ 𝑍 ↔ ( 𝑌 𝐻 𝑍 ) ≠ ∅ ) ) |
42 |
41
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ 𝑌 ≤ 𝑍 ) → ( 𝑌 𝐻 𝑍 ) ≠ ∅ ) |
43 |
42
|
adantrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑌 𝐻 𝑍 ) ≠ ∅ ) |
44 |
39 43
|
eqnetrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ≠ ∅ ) |
45 |
26 44
|
sylanbr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ≠ ∅ ) |
46 |
5 6 27 28 29 30 31 38 45
|
catcone0 |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ∧ 𝑍 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ≠ ∅ ) |
47 |
26 46
|
sylanb |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ≠ ∅ ) |
48 |
21 47
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 𝐻 𝑍 ) ≠ ∅ ) |
49 |
17 9 40
|
catprslem |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑍 ↔ ( 𝑋 𝐻 𝑍 ) ≠ ∅ ) ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → ( 𝑋 ≤ 𝑍 ↔ ( 𝑋 𝐻 𝑍 ) ≠ ∅ ) ) |
51 |
48 50
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) ) → 𝑋 ≤ 𝑍 ) |
52 |
51
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) |
53 |
19 52
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑋 ∧ ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍 ) → 𝑋 ≤ 𝑍 ) ) ) |