Metamath Proof Explorer


Theorem catprs2

Description: A category equipped with the induced preorder, where an object x is defined to be "less than or equal to" y iff there is a morphism from x to y , is a preordered set, or a proset. The category might not be thin. See catprsc and catprsc2 for constructions satisfying the hypothesis "catprs.1". See catprs for a more primitive version. See prsthinc for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypotheses catprs.1 ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) )
catprs.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
catprs.h ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
catprs.c ( 𝜑𝐶 ∈ Cat )
catprs2.l ( 𝜑 = ( le ‘ 𝐶 ) )
Assertion catprs2 ( 𝜑𝐶 ∈ Proset )

Proof

Step Hyp Ref Expression
1 catprs.1 ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) )
2 catprs.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
3 catprs.h ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
4 catprs.c ( 𝜑𝐶 ∈ Cat )
5 catprs2.l ( 𝜑 = ( le ‘ 𝐶 ) )
6 1 2 3 4 catprs ( ( 𝜑 ∧ ( 𝑤𝐵𝑣𝐵𝑢𝐵 ) ) → ( 𝑤 𝑤 ∧ ( ( 𝑤 𝑣𝑣 𝑢 ) → 𝑤 𝑢 ) ) )
7 6 ralrimivvva ( 𝜑 → ∀ 𝑤𝐵𝑣𝐵𝑢𝐵 ( 𝑤 𝑤 ∧ ( ( 𝑤 𝑣𝑣 𝑢 ) → 𝑤 𝑢 ) ) )
8 2 5 4 isprsd ( 𝜑 → ( 𝐶 ∈ Proset ↔ ∀ 𝑤𝐵𝑣𝐵𝑢𝐵 ( 𝑤 𝑤 ∧ ( ( 𝑤 𝑣𝑣 𝑢 ) → 𝑤 𝑢 ) ) ) )
9 7 8 mpbird ( 𝜑𝐶 ∈ Proset )