| Step | Hyp | Ref | Expression | 
						
							| 1 |  | catprsc.1 | ⊢ ( 𝜑  →   ≤   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  ( 𝑥 𝐻 𝑦 )  ≠  ∅ ) } ) | 
						
							| 2 | 1 | breqd | ⊢ ( 𝜑  →  ( 𝑧  ≤  𝑤  ↔  𝑧 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  ( 𝑥 𝐻 𝑦 )  ≠  ∅ ) } 𝑤 ) ) | 
						
							| 3 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 4 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 5 |  | simpl | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝑥  =  𝑧 ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( 𝑥  ∈  𝐵  ↔  𝑧  ∈  𝐵 ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  𝑦  =  𝑤 ) | 
						
							| 8 | 7 | eleq1d | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( 𝑦  ∈  𝐵  ↔  𝑤  ∈  𝐵 ) ) | 
						
							| 9 |  | oveq12 | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( 𝑥 𝐻 𝑦 )  =  ( 𝑧 𝐻 𝑤 ) ) | 
						
							| 10 | 9 | neeq1d | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( ( 𝑥 𝐻 𝑦 )  ≠  ∅  ↔  ( 𝑧 𝐻 𝑤 )  ≠  ∅ ) ) | 
						
							| 11 | 6 8 10 | 3anbi123d | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  ( 𝑥 𝐻 𝑦 )  ≠  ∅ )  ↔  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵  ∧  ( 𝑧 𝐻 𝑤 )  ≠  ∅ ) ) ) | 
						
							| 12 |  | df-3an | ⊢ ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵  ∧  ( 𝑧 𝐻 𝑤 )  ≠  ∅ )  ↔  ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝑧 𝐻 𝑤 )  ≠  ∅ ) ) | 
						
							| 13 | 11 12 | bitrdi | ⊢ ( ( 𝑥  =  𝑧  ∧  𝑦  =  𝑤 )  →  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  ( 𝑥 𝐻 𝑦 )  ≠  ∅ )  ↔  ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝑧 𝐻 𝑤 )  ≠  ∅ ) ) ) | 
						
							| 14 |  | eqid | ⊢ { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  ( 𝑥 𝐻 𝑦 )  ≠  ∅ ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  ( 𝑥 𝐻 𝑦 )  ≠  ∅ ) } | 
						
							| 15 | 3 4 13 14 | braba | ⊢ ( 𝑧 { 〈 𝑥 ,  𝑦 〉  ∣  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  ( 𝑥 𝐻 𝑦 )  ≠  ∅ ) } 𝑤  ↔  ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝑧 𝐻 𝑤 )  ≠  ∅ ) ) | 
						
							| 16 | 2 15 | bitrdi | ⊢ ( 𝜑  →  ( 𝑧  ≤  𝑤  ↔  ( ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 )  ∧  ( 𝑧 𝐻 𝑤 )  ≠  ∅ ) ) ) | 
						
							| 17 | 16 | baibd | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( 𝑧  ≤  𝑤  ↔  ( 𝑧 𝐻 𝑤 )  ≠  ∅ ) ) | 
						
							| 18 | 17 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ∀ 𝑤  ∈  𝐵 ( 𝑧  ≤  𝑤  ↔  ( 𝑧 𝐻 𝑤 )  ≠  ∅ ) ) |