Metamath Proof Explorer


Theorem catprsc

Description: A construction of the preorder induced by a category. See catprs2 for details. See also catprsc2 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypothesis catprsc.1 ( 𝜑 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } )
Assertion catprsc ( 𝜑 → ∀ 𝑧𝐵𝑤𝐵 ( 𝑧 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 catprsc.1 ( 𝜑 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } )
2 1 breqd ( 𝜑 → ( 𝑧 𝑤𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } 𝑤 ) )
3 vex 𝑧 ∈ V
4 vex 𝑤 ∈ V
5 simpl ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → 𝑥 = 𝑧 )
6 5 eleq1d ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( 𝑥𝐵𝑧𝐵 ) )
7 simpr ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → 𝑦 = 𝑤 )
8 7 eleq1d ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( 𝑦𝐵𝑤𝐵 ) )
9 oveq12 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑤 ) )
10 9 neeq1d ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( ( 𝑥 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )
11 6 8 10 3anbi123d ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( ( 𝑥𝐵𝑦𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ↔ ( 𝑧𝐵𝑤𝐵 ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) )
12 df-3an ( ( 𝑧𝐵𝑤𝐵 ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ↔ ( ( 𝑧𝐵𝑤𝐵 ) ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )
13 11 12 bitrdi ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( ( 𝑥𝐵𝑦𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ↔ ( ( 𝑧𝐵𝑤𝐵 ) ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) )
14 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) }
15 3 4 13 14 braba ( 𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐵𝑦𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } 𝑤 ↔ ( ( 𝑧𝐵𝑤𝐵 ) ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )
16 2 15 bitrdi ( 𝜑 → ( 𝑧 𝑤 ↔ ( ( 𝑧𝐵𝑤𝐵 ) ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) )
17 16 baibd ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( 𝑧 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )
18 17 ralrimivva ( 𝜑 → ∀ 𝑧𝐵𝑤𝐵 ( 𝑧 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )