Step |
Hyp |
Ref |
Expression |
1 |
|
catprsc.1 |
⊢ ( 𝜑 → ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } ) |
2 |
1
|
breqd |
⊢ ( 𝜑 → ( 𝑧 ≤ 𝑤 ↔ 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } 𝑤 ) ) |
3 |
|
vex |
⊢ 𝑧 ∈ V |
4 |
|
vex |
⊢ 𝑤 ∈ V |
5 |
|
simpl |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝑥 = 𝑧 ) |
6 |
5
|
eleq1d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
7 |
|
simpr |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝑦 = 𝑤 ) |
8 |
7
|
eleq1d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵 ) ) |
9 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑤 ) ) |
10 |
9
|
neeq1d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
11 |
6 8 10
|
3anbi123d |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) ) |
12 |
|
df-3an |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
13 |
11 12
|
bitrdi |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) ) |
14 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } |
15 |
3 4 13 14
|
braba |
⊢ ( 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } 𝑤 ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
16 |
2 15
|
bitrdi |
⊢ ( 𝜑 → ( 𝑧 ≤ 𝑤 ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) ) |
17 |
16
|
baibd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
18 |
17
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |