Metamath Proof Explorer


Theorem catprsc2

Description: An alternate construction of the preorder induced by a category. See catprs2 for details. See also catprsc for a different construction. The two constructions are different because df-cat does not require the domain of H to be B X. B . (Contributed by Zhi Wang, 23-Sep-2024)

Ref Expression
Hypothesis catprsc2.1 ( 𝜑 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝐻 𝑦 ) ≠ ∅ } )
Assertion catprsc2 ( 𝜑 → ∀ 𝑧𝐵𝑤𝐵 ( 𝑧 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 catprsc2.1 ( 𝜑 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝐻 𝑦 ) ≠ ∅ } )
2 1 breqd ( 𝜑 → ( 𝑧 𝑤𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝐻 𝑦 ) ≠ ∅ } 𝑤 ) )
3 vex 𝑧 ∈ V
4 vex 𝑤 ∈ V
5 oveq12 ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑤 ) )
6 5 neeq1d ( ( 𝑥 = 𝑧𝑦 = 𝑤 ) → ( ( 𝑥 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )
7 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝐻 𝑦 ) ≠ ∅ } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝐻 𝑦 ) ≠ ∅ }
8 3 4 6 7 braba ( 𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝐻 𝑦 ) ≠ ∅ } 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ )
9 2 8 bitrdi ( 𝜑 → ( 𝑧 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )
10 9 adantr ( ( 𝜑 ∧ ( 𝑧𝐵𝑤𝐵 ) ) → ( 𝑧 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )
11 10 ralrimivva ( 𝜑 → ∀ 𝑧𝐵𝑤𝐵 ( 𝑧 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )