Metamath Proof Explorer


Theorem catprslem

Description: Lemma for catprs . (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypotheses catprs.1 ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) )
catprslem.x ( 𝜑𝑋𝐵 )
catprslem.y ( 𝜑𝑌𝐵 )
Assertion catprslem ( 𝜑 → ( 𝑋 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 catprs.1 ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) )
2 catprslem.x ( 𝜑𝑋𝐵 )
3 catprslem.y ( 𝜑𝑌𝐵 )
4 breq1 ( 𝑥 = 𝑧 → ( 𝑥 𝑦𝑧 𝑦 ) )
5 oveq1 ( 𝑥 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑦 ) )
6 5 neeq1d ( 𝑥 = 𝑧 → ( ( 𝑥 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑧 𝐻 𝑦 ) ≠ ∅ ) )
7 4 6 bibi12d ( 𝑥 = 𝑧 → ( ( 𝑥 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ↔ ( 𝑧 𝑦 ↔ ( 𝑧 𝐻 𝑦 ) ≠ ∅ ) ) )
8 breq2 ( 𝑦 = 𝑤 → ( 𝑧 𝑦𝑧 𝑤 ) )
9 oveq2 ( 𝑦 = 𝑤 → ( 𝑧 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑤 ) )
10 9 neeq1d ( 𝑦 = 𝑤 → ( ( 𝑧 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )
11 8 10 bibi12d ( 𝑦 = 𝑤 → ( ( 𝑧 𝑦 ↔ ( 𝑧 𝐻 𝑦 ) ≠ ∅ ) ↔ ( 𝑧 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) )
12 7 11 cbvral2vw ( ∀ 𝑥𝐵𝑦𝐵 ( 𝑥 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ↔ ∀ 𝑧𝐵𝑤𝐵 ( 𝑧 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )
13 1 12 sylib ( 𝜑 → ∀ 𝑧𝐵𝑤𝐵 ( 𝑧 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) )
14 breq12 ( ( 𝑧 = 𝑋𝑤 = 𝑌 ) → ( 𝑧 𝑤𝑋 𝑌 ) )
15 oveq12 ( ( 𝑧 = 𝑋𝑤 = 𝑌 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑋 𝐻 𝑌 ) )
16 15 neeq1d ( ( 𝑧 = 𝑋𝑤 = 𝑌 ) → ( ( 𝑧 𝐻 𝑤 ) ≠ ∅ ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) )
17 14 16 bibi12d ( ( 𝑧 = 𝑋𝑤 = 𝑌 ) → ( ( 𝑧 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ↔ ( 𝑋 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) )
18 17 rspc2gv ( ( 𝑋𝐵𝑌𝐵 ) → ( ∀ 𝑧𝐵𝑤𝐵 ( 𝑧 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) → ( 𝑋 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) )
19 2 3 18 syl2anc ( 𝜑 → ( ∀ 𝑧𝐵𝑤𝐵 ( 𝑧 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) → ( 𝑋 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) )
20 13 19 mpd ( 𝜑 → ( 𝑋 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) )