Step |
Hyp |
Ref |
Expression |
1 |
|
catprs.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ) |
2 |
|
catprslem.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
3 |
|
catprslem.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
4 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑦 ) ) |
6 |
5
|
neeq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑧 𝐻 𝑦 ) ≠ ∅ ) ) |
7 |
4 6
|
bibi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ↔ ( 𝑧 ≤ 𝑦 ↔ ( 𝑧 𝐻 𝑦 ) ≠ ∅ ) ) ) |
8 |
|
breq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 ≤ 𝑦 ↔ 𝑧 ≤ 𝑤 ) ) |
9 |
|
oveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑤 ) ) |
10 |
9
|
neeq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
11 |
8 10
|
bibi12d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ≤ 𝑦 ↔ ( 𝑧 𝐻 𝑦 ) ≠ ∅ ) ↔ ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) ) |
12 |
7 11
|
cbvral2vw |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
13 |
1 12
|
sylib |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
14 |
|
breq12 |
⊢ ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) → ( 𝑧 ≤ 𝑤 ↔ 𝑋 ≤ 𝑌 ) ) |
15 |
|
oveq12 |
⊢ ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑋 𝐻 𝑌 ) ) |
16 |
15
|
neeq1d |
⊢ ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) → ( ( 𝑧 𝐻 𝑤 ) ≠ ∅ ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) |
17 |
14 16
|
bibi12d |
⊢ ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) → ( ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ↔ ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) ) |
18 |
17
|
rspc2gv |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) ) |
19 |
2 3 18
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) ) |
20 |
13 19
|
mpd |
⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) |